Biodegradative capacity of Bacillus megaterium and Ralstonia solanacearum on biodegradation of P(3HB) films in simulated soil / Capacidade biodegradativa de Bacillus Megaterium e Ralstonia solanacearum na biodegradação de filmes de P(3HB) em solo simulado

Authors

  • Matheus Marques Torres Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Camila Rios Piecha
  • Karine Laste Macagnan
  • Mariane Igansi Alves
  • Angelita da Silveira Moreira
  • Luciana Bicca Dode
  • Cristiane Wienke Raubach
  • Patrícia Silva Diaz

DOI:

https://doi.org/10.34117/bjdv6n5-233

Keywords:

Biodegradation, Poly(3-hydroxybutyrate), Bioplastic, Ralstonia solanacearum, Bacillus megaterium.

Abstract

Poly(3-hydroxybutyrate) is a microbial biodegradable bioplastic that has been used as a substitute for petrochemical-based plastics. It complete degradates in a microbiological environment containing microorganisms with biodegradative capacity, being its identification important to the comprehension of the biodegradation process. In addition, new methodologies that are closer to a natural microenvironment increase the reliability of the experiment. In this context, the present study analyses the degradation capacity of the Brazilian strains Ralstonia solanacearum RS and Bacillus megaterium CN3 on biodegradation of P(3HB) synthesized by Ralstonia solanacearum RS and commercial P(3HB). It was conducted under greenhouse conditions and P(3HB) production was performed in a bioreactor before extraction. Films were buried in the soil and removed at 20, 40, 60, 80, and 100 days intervals and analyzed by biodegradation percentage and differences in macro and microstructural characteristics. After 100 days of the experiment, the most degraded P(3HB) was the one produced by R. solanacearum RS, completely degraded (100%) in non-sterile soil. In addition, B. megaterium CN3 proved to be a potential degradative microorganism, degrading 88% of P(3HB)RS in sterile soil. The macroscopic analysis showed surface modifications over time, including cracks, holes, gradual mass loss and color changes. Microscopic analysis demonstrates the increase in the pore size and cracks confirming the steps of biodegradation. Therefore, the experiment proved to be able to simulate viable conditions for the growth of microorganisms and to evaluated the biodegradation capacity of bacteria.

References

Accinelli C, Saccà M, Mencarelli M, Vicari A. (2012) Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere. 89(2):136-143. https://doi.org/10.1016/j.chemosphere.2012.05.028

Altaee N, El-Hiti G, Fahdil A, Sudesh K, Yousif E. (2016) Biodegradation of different formulations of polyhydroxybutyrate films in soil. Springerplus. 5(1): 762. https://doi.org/ 10.1186/s40064-016-2480-2

Anh T T V, Toan N T K, Huy N Q. (2010) Degradation of poly(3-hydroxybutyrate) (PHB) by Bacillus gelatini isolated from Vietnam. Tap chi Sinh hoc. 32(3): 72-77. https://doi.org/10.15625/0866-7160/v32n3.710

Anstey A, Muniyasamy S, Reddy M, Misra M, Mohanty A. (2014) Processability and Biodegradability Evaluation of Composites from Poly(butylene succinate) (PBS) Bioplastic and Biofuel Co-products from Ontario. J Polym Environ. 22(2):209-218. https://doi.org/10.1007/s10924-013-0633-8

Araújo R, Conceição I, Carvalho L, Alves T, Barbosa R. (2015) Influência da argila vermiculita brasileira na biodegradação de filmes de PHB. Polímeros. 25(5):483-491.http://dx.doi.org/10.1590/0104-1428.2031

Bonartsev A, Boskhomodgiev A, Iordanskii A, Bonartseva G, Rebrov A, Makhina T et al. (2012) Hydrolytic Degradation of Poly(3-hydroxybutyrate), Polylactide and their Derivatives: Kinetics, Crystallinity, and Surface Morphology. Mol Cryst Liq Cryst. 556(1):288-300. https://doi.org/10.1080/15421406.2012.635982

Boyandin, A. N. et al. (2013) Microbial degradation of polyhydroxyalkanoates in tropical soils. International Biodeterioration & Biodegradation. 83:77–84. https://doi.org/10.1016/j.ibiod.2013.04.014

Boyandin A, Prudnikova S, Filipenko M, Khrapov E, Vasil’ev A, Volova T. (2011) Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl Biochem Microbiol. 48(1):28-36. http://dx.doi.org/10.1590/0104-1428.2031.

Bucci D, Tavares L, Sell I (2007) Biodegradation and physical evaluation of PHB packaging. Polym Test. 26(7):908-915.https://doi.org/10.1016/j.polymertesting.2007.06.013

Cappitelli F, Principi P, Sorlini C. (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help?. Trends Biotechnol. 24(8):350-354. http://dx.doi.org/:10.1016/j.tibtech.2006.06.001

Casarin S, Agnelli J, Malmonge S, Rosário F. (2013) Blendas PHB/copoliésteres biodegradáveis: biodegradação em solo. Polímeros. 23(1):115-122. http://dx.doi.org/10.1590/S0104-14282013005000003

Colak A, Güner S. (2004) Polyhydroxyalkanoate degrading hydrolase-like activities by Pseudomonas sp. isolated from soil. Int Biodeterior Biodegradation. 53(2):103-109. http://dx.doi.org/ 10.1016/j.ibiod.2003.10.006

Corrêa M, Rezende M, Rosa D, Agnelli J, Nascente P. (2008) Surface composition and morphology of poly(3-hydroxybutyrate) exposed to biodegradation. Polym Test. 27(4):447-452. https://doi.org/10.1016/j.polymertesting.2008.01.007

Emadian S, Onay T, Demirel B. (2007) Biodegradation of bioplastics in natural environments. Waste Manage. 59:526-536. https://doi.org/10.1016/j.wasman.2016.10.006

Faria A, Martins-Franchetti S. (2010) Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do Rio Atibaia. Polímeros. 20(2):141-147. http://dx.doi.org/10.1590/S0104-14282010005000024.

Genin S, Denny T. (2012) Pathogenomics of the Ralstonia solanacearum Species Complex. Annu Rev Phytopathol. 50(1):67-89. http://dx.doi.org/10.1146/annurev-phyto-081211-173000

Grigull V, Mazur L, Garcia M, Schneider A, Pezzin A. (2015) Estudo Da Degradação De Blendas De Poli(Hidroxibutirato-Co-Hidroxivalerato)/Poli(L-Ácido Lático) Em Diferentes Condições Ambientais. Engevista. 17(4). https://doi.org/10.22409/engevista.v17i4.773

Gu J. (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegradation. 52(2):69-91. https://doi.org/10.1016/S0964-8305(02)00177-4

Kapanen A, Schettini E, Vox G, Itävaara M (2008) Performance and Environmental Impact of Biodegradable Films in Agriculture: A Field Study on Protected Cultivation. J Polym Environ. 16(2):109-122. https://doi.org/10.1007/s10924-008-0091-x

Kumaravel S, Hema R, Lakshmi R (2010) Production of Polyhydroxybutyrate (Bioplastic) and its Biodegradation by Pseudomonas Lemoignei and Aspergillus Niger. E- J Chem. 7(s1):S536-S542. https://doi.org/ 10.1155/2010/148547

Lim S, Gan S, Tan I. (2005) Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Appl Biochem Biotechnol. 126(1):23-33. https://doi.org/10.1007/s12010-005-0003-7

Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J. (2008) Polymer biodegradation: Mechanisms and estimation techniques – A review. Chemosphere. 73(4):429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064

Macagnan K, Rodrigues A, Alves M, Furlan L, Kesserlingh S, Moura A et al. (2017) Simplified recovery process of Ralstonia solanacearum-synthesized polyhydroxyalkanoates via chemical extraction complemented by liquid-liquid phase separation. Quím Nova. 40(2):125-130. https://doi.org/10.21577/0100-4042.20160162

Machado M, Pereira N, Miranda L, Terence M, Pradella J. (2010) Estudo das propriedades mecânicas e térmicas do polímero Poli-3-hidroxibutirato (PHB) e de compósitos PHB/pó de madeira. Polímeros. 20(1):65-71. https://doi.org10.11606/T.87.2008.tde-21012009-115422

Mendes I, Reis Junior F. (2003) Microrganismos e disponibilidade de fósforo (P) nos solos: uma análise crítica. Planaltina: Embrapa Cerrados. Embrapa Cerrados, ISSN 15175111.

https://www.infoteca.cnptia.embrapa.br/bitstream/doc/568171/1/doc85.pdf. Accessed 10 february 2018.

Montoro S, Shigue C, Sordi M, Santos A, Ré M. (2000) Estudo cinético da redução da massa molar do poli(3-hidroxibutirato-co-3-hidroxivalerato) (PHBHV). Polímeros. 20(1):19-24. https://doi.org/10.1590/S0104-14282010005000005

Ong S, Sudesh K. (2016) Effects of polyhydroxyalkanoate degradation on soil microbial community. Polym Degrad Stab. 131:9-19. https://doi.org/10.1016/j.polymdegradstab.2016.06.024

Pellicano M, Pachekoski W, Agnelli J. (2009) Influência da adição de amido de mandioca na biodegradação da blenda polimérica PHBV/Ecoflex®. Polímeros. 19(3):212-217. https://doi.org/10.1590/S0104-14282009000300009

Pelmont J. (2005) Biode?gradations et me?tabolismes. Les Ulis: EDP sciences. Edp Sciences, Les Ulis Cedex A, France

Rosa D, Chui Q, Pantano Filho R, Agnelli J. (2012) Avaliação da Biodegradação de Poli-beta-(Hidroxibutirato), Poli-beta-(Hidroxibutirato-co-valerato) e Poli-épsilon-(caprolactona) em Solo Compostado. Polímeros. 12(4):311-317. https://doi.org/10.1590/S0104-14282002000400015

Tansengco M, Tokiwa Y. (1997) Thermophilic microbial degradation of polyethylene succinate. World J Microbiol Biotechnol. 14(1):133-138. https://doi.org/10.1023/A:1008897121993

Volova T, Belyaeva O, Plotnikov V, Puzyr A. (1998) Studies of Biodegradation of Microbial Polyhydroxyalkanoates. Appl Biochem Microbiol. 34(5):488-492.

Volova T, Boyandin A, Vasiliev A, Karpov V, Prudnikova S, Mishukova O et al. (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab. 95(12):2350-2359. https://doi.org/10.1016/j.polymdegradstab.2010.08.023

Volova T, Prudnikova S, Vinogradova O, Syrvacheva D, Shishatskaya E. (2017) Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Th7eir Biodegradability. Microb Ecol. 73(2):353-367. https://doi.org10.1007/s00248-016-0852-3

Wang Z, Lin X, An J, Ren C, Yan X. (2013) Biodegradation of Polyhydroxybutyrate Film by Pseudomonas mendocina DS04-T. Polym Plast Technol Eng. 52(2):195-199.https://doi.org/10.1080/03602559.2012.735738

Warscheid T, Braams J. (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation. 46(4):343-368. https://doi.org/10.1016/S0964-8305(00)00109-8

Weng Y, Wang L, Zhang M, Wang X, Wang Y. (2013) Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polym Test. 32(1):60-70. https://doi.org/10.1016/j.polymertesting.2012.09.014

Weng Y, Wang X, Wang Y. (2011) Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polym Test. 30(4):372-380. https://doi.org/10.1016/j.polymertesting.2011.02.001

Woolnough C, Charlton T, Yee L, Sarris M, Foster L. (2008) Surface changes in polyhydroxyalkanoate films during biodegradation and biofouling. Polym. Int. 57(9):1042-1051. https://doi.org/10.1002/pi.2444

Yew S, Tang H, Sudesh K. (2006) Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym Degrad Stab. 91(8):1800-1807. https://doi.org/10.1016/j.polymdegradstab.2005.11.011

Downloads

Published

2020-05-13

How to Cite

Torres, M. M., Piecha, C. R., Macagnan, K. L., Alves, M. I., Moreira, A. da S., Dode, L. B., Raubach, C. W., & Diaz, P. S. (2020). Biodegradative capacity of Bacillus megaterium and Ralstonia solanacearum on biodegradation of P(3HB) films in simulated soil / Capacidade biodegradativa de Bacillus Megaterium e Ralstonia solanacearum na biodegradação de filmes de P(3HB) em solo simulado. Brazilian Journal of Development, 6(5), 27034–27050. https://doi.org/10.34117/bjdv6n5-233

Issue

Section

Original Papers