Evaluation of lipid yield for biodiesel production extracted from microalgae Scenedesmus sp. submitted to different homogenization times and physicochemical changes / Avaliação do rendimento lipídico para produção de biodiesel extraído de microalgas Scenedesmus sp. submetidos a diferentes tempos de homogeneização e alterações físico-químicas

Vivian Vicentini Kuss, René Gonzalez Carliz, Gisel Chenard Díaz, Carolina Vieira Viegas, Donato Alexandre Gomes Aranda, Yordanka Reyes Cruz

Abstract


Due to the growing demand for fuels and the consequent concern with the problems related to the burning of these products, the interest arises in developing new technologies linked to the use of natural resources to generate renewable energy1,2, replacing conventional sources. Based on this assumption, biomass is an excellent alternative for biofuel production.3 Microalgae have shown great advantages compared to traditional agricultural crops. Microalgae have a high production capacity of oil per unit area4; are adaptable crops, including using brackish or wastewater in their cultivation and which would be unsuitable for traditional agricultural crops, provided they have satisfactory heat and radiation conditions.5 In addition, microalgae have high atmospheric CO2 fixation capacity.6 In this context, an evaluation of the yield of lipids extracted from biomass is presented microalgae Scenedesmus sp. following various treatments (homogenization and physicochemical variations of the environment: such as temperature and/or pH), which allow the selection of a technological route for the extraction of lipids of interest, aiming the production of biodiesel.


Keywords


Microalgae, lipids, homogenization, biomass, emulsion.

Full Text:

PDF

References


Jacob S. Kruger, Earl D. Christensen, Tao Dong, Stefanie Van Wychen, Gina M. Fioroni, Philip T. Pienkos, and Robert L. McCormick. Bleaching and Hydroprocessing of Algal Biomass-Derived Lipids to Produce Renewable Diesel Fuel. Energy Fuels, 2017, 31, 10946−10953. https://doi.org/10.1021/acs.energyfuels.7b01867

David Bolonio, Alberto Llamas, Jose Rodríguez-Fernandez, Ana María Al-Lal, Laureano Canoira, Magín Lapuerta and Luis Gomez. Estimation of Cold Flow Performance and Oxidation Stability of Fatty Acid Ethyl Esters from Lipids Obtained from Escherichia coli. Energy Fuels, 2015, 29, 2493−2502. https://doi.org/10.1021/acs.energyfuels.5b00141

Kubička, D. & Horáček, J. Deactivation of HDS catalysts in deoxygenation of vegetable oils. Applied Catalysis A: General, 2011, 94, 9-17. https://doi.org/10.1016/j.apcata.2010.10.034

Show, K.; Lee, D.; Tay, J.; Lee, T.; Chang, J. Microalgal drying and cell disruption - Recent advances. Bioresource Technology, 2015, 184, 258-266. https://doi.org/10.1016/j.biortech.2014.10.139

Halim, R.; Danquah, M. K.; Webley, P. A. Extraction of oil from microalgae for biodiesel production: a review. Biotechnology Advances, 2012, 30, 709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001

Delrue, F.; Setier, P. A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A. K. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresource Technology, 2012, 111, 191-200. https://doi.org/10.1016/j.biortech.2012.02.020

Lam, M. K.; Lee, K. T.. Microalgae biofuels: A critical review of issues, problems and the way forward; Biotechnology Advances, 2011, 30. https://doi.org/10.1016/j.biotechadv.2011.11.008

BiodieselBR; O que é Biodiesel?. Disponível em < https://www.biodieselbr.com/biodiesel/definicao/o-que-e-biodiesel.htm> Publicado em: 7 de Janeiro de 2016. Acesso em: 29 de Junho de 2019.

Cruz, Y.R.; Leonett, A.Z.F.; Díaz, G.C.; Carliz, R.G.; Rossa, V.; Aranda, D.A.G.; Oliveira, L.B.; Furtado, N.. Produção de hidrocarbonetos renováveis a partir do bio-óleo extraído da biomassa úmida da microalga Monoraphidium sp. 6° Congresso da Rede Brasileira de Tecnologia de Biodiesel e 9º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel, 2016, Vol. 01, pp. 22-23; Natal, RN.

Yang Li, Huan Liu, Kangxin Xiao, Minghao Jin, Han Xiao, and Hong Yao. Combustion and Pyrolysis Characteristics of Hydrochar Prepared by Hydrothermal Carbonization of Typical Food Waste: Influence of Carbohydrates, Proteins, and Lipids. Energy Fuels, 2020, 34, 430−439. https://doi.org/10.1021/acs.energyfuels.9b02940

Gule Teri, Ligang Luo and Phillip E. Savage. Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures. Energy Fuels, 2014, 28, 7501−7509. https://doi.org/10.1021/ef501760d

Espinosa, L.; Tapanes, N.C.; Aranda, D.A.G.; Cruz, Y.R.. As microalgas como fonte de produção de biodiesel: discussão de sua viabilidade. Acta Scientiae & Technicae, 2014, Ed. 1, Vol. 02. https://doi.org/10.17648/uezo-ast-v2i1.58

Fontes, L.M.. Biodegradação de emulsão de óleo residual pesado em cultivo de Desmodesmus sp. 2017, Dissertação para obtenção do título de mestre; Escola Politécnica, Universidade Federal da Bahia;Salvador, BA.

Encarnação, A.P.G.. Geração de Biodiesel pelos Processos de Transesterificação e Hidroesterificação, Uma Avaliação Econômica., 2008, Dissertação para obtenção do título de mestre; Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, UFRJ;Rio de Janeiro, RJ.

Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M.; Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 2010, Vol. 101, pp. 575-577. https://doi.org/10.1016/j.biortech.2009.03.058

Huan He, Ryan P. Rodgers, Alan G. Marshall and Chang Samuel Hsu. Algae Polar Lipids Characterized by Online Liquid Chromatography Coupled with Hybrid Linear Quadrupole Ion Trap/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels, 2011, 25, 4770–4775. https://doi.org/10.1021/ef201061j

Mark Mascal and Edward B. Nikitin. Co-processing of Carbohydrates and Lipids in Oil Crops To Produce a Hybrid Biodiesel. Energy Fuels, 2010, 24, 2170–2171. https://doi.org/10.1021/ef9013373

Santos, R.R.; Moreira, D.M.; Kunigami, C.N.; Aranda, D.A.G.; Teixeira, C.M.L.L.. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass. Ultrasonics Sonochemistry, 2015, Vol. 22, pp. 95-99. https://doi.org/10.1016/j.ultsonch.2014.05.015

Kim, J.; Yoo, G.; Lee, H.; Lim, J.; Kim, K.; Kim, C.W.; Park, M.S.; Yang, J.W.. Methods of downstream processing for the production of biodiesel from microalgae; Biotechnology Advances, 2013, Vol. 31, pp. 862-876. https://doi.org/10.1016/j.biotechadv.2013.04.006

Pinho, C.R.G.; Franchi, M.A.; Augusto, P.E.D.; Cristianini, M.. Avaliação do escoamento de leite desnatado durante homogeneização a alta pressão (HAP) por meio de fluidodinâmica computacional (CFD). Brazilian Journal of Food Technology, 2011, Ed.03, Vol. 14, p. 232-240, Campinas, SP. http://dx.doi.org/10.4260/BJFT2011140300028

Pinho C.R.G.. Processamento de leite desnatado através da tecnologia de homogeneização a ultra alta pressão (HUAP), 2006, Tese para obtenção do título de doutor; Programa de Pós Graduação: Programa em Tecnologia de Alimentos, UNICAMP; Campinas, SP.

Tonya Morgan, Eduardo Santillan-Jimenez, and Mark Crocker. Simulated Distillation Approach to the Gas Chromatographic Analysis of Feedstock and Products in the Deoxygenation of Lipids to Hydrocarbon Biofuels. Energy Fuels, 2014, 28, 2654−2662. https://doi.org/10.1021/ef9013373

Fangfang Yang, Changhong Cheng, Lijuan Long, Qunju Hu, Qikun Jia, Hualian Wu and Wenzhou Xiang. Extracting Lipids from Several Species of Wet Microalgae Using Ethanol at Room Temperature. Energy Fuels, 2015, 29, 2380−2386. https://doi.org/10.1021/ef5023576

Peilu Liu, Yuri E. Corilo, Alan G. Marshall. Polar Lipid Composition of Biodiesel Algae Candidates Nannochloropsis oculata and Haematococcus pluvialis from Nano Liquid Chromatography Coupled with Negative Electrospray Ionization 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels, 2016, 30, 8270−8276. https://doi.org/10.1021/acs.energyfuels.6b01514

Schmid-Bondzynski-Ratzlaff. Extração e quantificação de lipídios em microalgas. Modificado pela Universidade Federal de Viçosa. Departamento de Tecnologia de Alimentos, 2012.

Clemmitt, R. H.; Chase, H. A. Immobilised metal affinity chromatography of β galactosidase from unclarified Escherichia coli homogenates using expanded bed adsorption. Journal of Chromatography A, 2000, v. 874, n.1, p. 27-43. https://doi.org/10.1016/S0021-9673(00)00087-X

Yap, W. B.; Tey, B. T.; Alitheen, N. B.; Tan, W. S. Purification of His-tagged hepatitis B core antigen from unclarified bacterial homogenate using immobilized metal affinity expanded bed adsorption chromatography. Journal of Chromatography A, 2010, v. 1217, n.21, p.3473-3480. https://doi.org/10.1016/j.chroma.2007.09.065

Ho, C. W.; Chew, T. K.; Ling, T. C.; Kamaruddin, S.; Tan, W. S.; Tey, B. T. Efficient mechanical cell disruption of Escherichia coli by an ultrasonicator and recovery of intracellular hepatitis B core antigen. Process Biochemistry, 2006, v.41, n.8, p. 1829-1834. https://doi.org/10.1007/s12257-019-0204-5

Fenfen Zhu, Luyao Zhao, Huimin Jiang, Zhaolong Zhang, Yiqun Xiong, Juanjuan Qi, Jiawei Wang. Comparison of the Lipid Content and Biodiesel Production from Municipal Sludge Using Three Extraction Methods. Energy Fuels, 2014, 28, 5277−5283. https://doi.org/10.1021/ef500730c

Benelhadj, S.; Gharsallaoui, A.; Degraeve, P.; Attia, H.; Ghorbel, D. Effects of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 2016, 196, 1056-1063. https://doi.org/10.1016/j.foodchem.2015.08.133




DOI: https://doi.org/10.34117/bjdv6n4-394

Refbacks

  • There are currently no refbacks.