Functional and antioxidant properties of a chicken blood meal hydrolysate / Propriedades funcionais e antioxidantes de um hidrolisado de farinha de sangue de frango

Fillemon Edillyn da Silva Bambirra Alves, Gerson Lopes Teixeira, Suelen Ávila, Rosemary Hoffmann Ribani, Agnes de Paula Scheer


Chicken blood is a slaughterhouse by-product rich in protein commonly transformed into blood meal. In this study, the potential of chicken blood meal as a source of protein hydrolysates with interesting properties for the industry was investigated. The hydrolysis performed at 60 °C, pH 8.0 and 5% enzyme-to-substrate ratio with Alcalase® 2.4L for 90 minutes resulted in a DH of 19.3% by the pH-stat method and 22.7% by the OPA assay. A 1:3 (v/v) O/W emulsion prepared with 1% hydrolysate solution had an emulsifying activity index of 74.4 m²/g and an emulsifying stability index of 413.2 min. Microphotographs taken at days 0 and 7 showed that the number of droplets in the emulsion seems to decrease over time due to coalescence. After whipped, the 1% hydrolysate solution had 32% foam capacity and 6% foam stability after one-hour rest. The hydrolysate was found to be an electron donor and metal reducer according to the FRAP assay (6.8 μmol TE/g), but displayed no radical scavenging activity according to the ABTS and DPPH assays. The results suggest that chicken blood meal hydrolysate may be a potential ingredient in the food, pharmaceutical and cosmetic industries.



animal protein; hydrolysis; emulsion; foaming; antioxidant.

Full Text:



ABPA, Associação Brasileira de Proteína Animal. (2017). RelatórioAnual da ABPA.

Adler-Nissen, J. (1977) Enzymatic hydrolysis of fish proteins, Process Biochemistry, 12(6), 18–23.

Adler-Nissen, J. (1986) Enzymic Hydrolysis of Food Proteins. Barking: Elsevier Applied Science Publishers.

Álvarez, C., Tiwari, B. K., Rendueles, M. & Díaz, M. (2016) Use of RSM to describe the effect of time and temperature on the production of decoloured, antioxidant and functional peptides from porcine haemoglobin by sub-critical water hydrolysis. LWT - Food Science and Technology, 73, 280–289.

Association of Official Agricultural Chemists. (1990) AOAC Official Methods of Analysis (15ª ed.), Washington D.C..: Association of Official Agricultural Chemists – AOAC.

Bah, C. S. F., Bekhit, A. E. D. A., Carne, A. & McConnell, M. A. (2013) Slaughterhouse blood: An emerging source of bioactive compounds, Comprehensive Reviews in Food Science and Food Safety, 12(3), 314–331.

Bah, C. S. F., Carne, A., McConnell, M. A., Mros, S. &Bekhit, A. E. D. A. (2016) Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chemistry. 202, 458–466.

Barbi, R. C. T., Teixeira, G. L., Hornung, P. S., Ávila, S. & Hoffmann-Ribani, R. (2018) Eriobotrya japonica seed as a new source of starch: Assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocolloids, 77, 646–658.

Benzie, I. F. F. e Strain, J. J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.

Bhat, Z. F., Kumar, S. e Bhat, H. F. (2015) Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52(9), 5377–5392.

Brand-Williams, W., Cuvelier, M. E. e Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

Bustillo-Lecompte, C. F. e Mehrvar, M. (2015) Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management. Elsevier Ltd, 161, 287–302.

Chalamaiah, M., Jyothirmayi, T., Diwan, P. V. e Dinesh Kumar, B. (2015) Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). Journal of Food Science and Technology, 52(9). 5817–5825.

Church, F. C., Swaisgood, H. E., Porter, D. H. e Catignani, G. L. (1983) Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. Journal of Dairy Science, 66(6), 1219–1227.

Cian, R. E., Drago, S. R. e González, R. J. (2012) Influence of pH on colour and iron content of peptide fractions obtained from bovine Hb concentrate hydrolysates. International Journal of Food Science and Technology, 47(7), 1348–1353.

Coffmann, C. W. e Garcia, V. V. (1977) Functional properties and amino acid content of a protein isolate from mung bean flour. International Journal of Food Science & Technology, 12(5), 473–484.

Damodaran, S. (2008) Amino Acids, Peptides and Proteins. In Damodaran, S., Parkin, K. L., &Fennema, O. R. (Eds.) Fennema’s Food Chemistry. (cap. 5; p. 217-330). Boca Raton: CRC Press.

Darine, S., Christophe, V. &Gholamreza, D. (2010) Production and functional properties of beef lung protein concentrates. Meat Science. 84(3), 315–322.

Da Silva Bambirra Alves, F. E.; Carpiné, D.; Teixeira, G. L.;Goedert, A. C.; Scheer, A. de P.; Ribani, R. H. (2020) Valorization of An Abundant Slaughterhouse By-product as a Source of Highly Technofunctional and Antioxidant Hydrolysates. Waste and Biomass Valorization (online), 1-17.

Evangelho, J. A., Vanier, N. L., Pinto, V. Z., Berrios, J. J. D., Dias, A. R. G. &Zavareze, E. R. (2017) Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chemistry, 214, 460–467.

Fierens, E., Brijs, K. &Delcour, J. A. (2016) Emulsifying and foaming properties of okara protein hydrolysates. Cereal Chemistry, 93(1), 71–76.

Hall, F. G., Jones, O. G., O’Haire, M. E. &Liceaga, A. M. (2017) Functional properties of tropical banded cricket (Gryllodessigillatus) protein hydrolysates. Food Chemistry. Elsevier Ltd, 224, 414–422.

Lee, D., Bamdad, F., Khey, K. &Sunwoo, H. H. (2018) Antioxidant and anti-inflammatory properties of chicken egg vitelline membrane hydrolysates. Poultry Science, 96(9), 3510–3516.

Matias, C. F. de Q., Lara, L. J. C., Baião, N. C., Cardoso, D. de M. & Baião, R. C. (2012) Utilização de farinhas de origem animal na avicultura. Nutritime, 9(5), 1944–1964.

Morales-Medina, R., Tamm, F., Guadix, A. M., Guadix, E. M. &Drusch, S. (2016) Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry. Elsevier Ltd, 194, 1208–1216.

Nielsen, P. M., Petersen, D. &Dambmann, C. (2001) Improved Method for Determining Food Protein Degree of Hydrolysis. Journal of Food Science, 66(5), 642–646.

Panizzolo, L. A. &Añón, M. C. (2015) Foaming Properties of Soy Protein Isolate Hydrolysates. Journal of Food and Nutrition Sciences, 3(1), 1–9.

Pearce, K. N. & Kinsella, J. E. (1978) Emulsifying Properties of Proteins: Evaluation of A Turbidimetric Technique. Journal of Agricultural and Food Chemistry, 26(3), 716–723.

Ravindran, R. & Jaiswal, A. K. (2016) Exploitation of Food Industry Waste for High-Value Products. Trends in Biotechnology. Elsevier Ltd, 34(1), 58–69.

Re, R., Pellegrini, N., Proteggente, A., P., A., Yang, M. & RE., C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biolology and Medicine, 26(9–10), 1231–1237.

Ren, J., Song, C. L., Wang, P., Li, S., K., N. K. & Zheng, X. Q. (2015) Modification of Structural and Functional Props. of Sunflower 11S Globulin Hydrolysates. Czech Journal of Food Sci., 33(5), 474–478.

Rutherfurd, S. M. (2010) Methodology for determining degree of hydrolysis of proteins in Hydrolysates: a review. Journal of AOAC International, 93(5), 1515–1522.

Schröder, A., Berton-Carabin, C., Venema, P. &Cornacchia, L. (2017) Interfacial properties of whey protein and wp hydrolysates and their influence on O/W emulsion stability. Food Hydrocolloids, 73, 129–140.

Spellman, D., McEvoy, E., O’Cuinn, G. & FitzGerald, R. J. (2003) Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13(6), 447–453.

Steinhardt, J. &Beychok, S. (1964) Interaction of Proteins with Hydrogen Ions and Other Small Ions and Molecules. In Neurath, H. (Ed.) The Proteins: Composition, Structure, and Function (cap. 2. p. 139–304) New York: Academic Press.

Teixeira, G. L., Züge, L. C. B., Silveira, J. L. M., Scheer, A. de P. &Ribani, R. H. (2016) The Impact of PolyoxyethyleneSorbitan Surfactants in the Microstructure and Rheological Behaviour of Emulsions Made With Melted Fat From Cupuassu (Theobroma grandiflorum). Journal of Surfactants and Detergents, 19(4), 725–738.

USDA, United States Department of Agriculture (2018). Livestock and Poultry: World Markets and Trade.

Valta, K., Damala, P., Orli, E., P, C., Moustakas, K., Malamis, D. &Loizidou, M. (2015) Valorisation Opportunities Related to Wastewater and Animal By-Products Exploitation by the Greek Slaughtering Industry: Current Status and Future Potentials. Waste and Biomass Valorization, 6(5), 927–945.

Vo, T. D. L., Chung, D. T. M., Doan, K. T., Le, D. T. & Trinh, H. V. (2017) Investigation of antioxidant potential of peptide fractions from the Tra Catfish by-product-derived hydrolysate using Alcalase® 2.4 L FG. AIP Conference Proceedings, 1878, 1–8.

Wang, B., Cheng, F., Gao, S., Ge, W. & Zhang, M. (2017) Double enzymatic hydrolysis preparation of heme from goose blood and microenc. to promote its stability and absorption. Food Chemistry, 217, 699–704.

Yan, M., Tao, H. e Qin, S. (2016) Effect of Enzyme Type on the Antioxidant Activities and Functional Properties of Enzymatic Hydrolysates from Sea Cucumber (Cucumariafrondosa) Viscera. Journal of Aquatic Food Product Technology, 25(6), 940–952.



  • There are currently no refbacks.