Eficiência de distribuição do sistema de irrigação, por meio de um veículo aéreo não tripulado de baixo custo / Efficiency of irrigation system distribution through a low-cost unmanned aerial vehicle

Bruno Henrique Tondato Arantes, Leticia Tondato Arantes, Pedro Rogerio Giongo, Victor Hugo Moraes, Estevam Matheus Costa, Patricia Costa Silva

Abstract


Apesar das videiras serem plantas tolerantes a seca, muitos produtores rurais sofrem com um sistema de irrigação de menor eficiência por falhas contidas nos aspersores do tipo canhão. Com isso, o objetivo desta pesquisa consistiu em desenvolver uma metodologia simples e barata para a identificação de possíveis problemas no sistema de irrigação e em estimar a uniformidade de distribuição da água irrigada, por meio de imagens georreferenciadas, a fim de proporcionar um melhor manejo da água para os pequenos produtores rurais. Para atender o objetivo, um drone de baixo custo aliada a uma metodologia simples foi adotada para se elaborar modelos de predição da lâmina aplicada, em um grid irregular de um parreiral, permitindo a calibração dos dados radiométricos aos dados de campo e espacialização da informação, por meio da estatística e regressão linear simples. Como resultado, as imagens da faixa do visível e os modelos empíricos permitiram mapear e estimar os locais que recebem lâmina acima e abaixo da média recomendada, identificando assim, problemas de distribuição, bem como as falhas dos aspersores do tipo canhão. O melhor modelo apresentou um erro de 14,36% e o pior de 20,99%, em suma, uma técnica eficiente e acessível aos pequenos produtores rurais.


Keywords


Drone, sensoriamento remoto, manejo de água.

References


BALUJA, J.; DIAGO, M. P.; BALDA, P.; ZORER, R.; MEGGIO, F.; MORALES, F.; TARDAGUILA, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, v. 30, n. 6, p. 511-522, 2012. Disponível em: https://link.springer.com/article/10.1007/s00271-012-0382-9.

BELLVERT, J.; ZARCO-TEJADA, P.J.; MARSAL, J.; GIRONA, J.; GONZÁLEZ-DUGO, V.; FERERES, E. Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Australian Journal of Grape and Wine Research, v. 22, n. 2, p. 307-315, 2016. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/ajgw.12173.

BERNI, J.A.J.; ZARCOTEJADA, P.J.; SEPULCRECANTÓ, G.; FERERES, E.; VILLALOBOS, F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, v. 113, n. 11, p. 2380-2388, 2009. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0034425709002090.

BIAN, J., ZHANG, Z., CHEN, J., CHEN, H., CUI, C., LI, X.; CHEN, S.; FU, Q. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sensing, v. 11, n. 3, p. 267, 2019. Disponível em: https://www.mdpi.com/2072-4292/11/3/267.

BONFANTE, A.; MONACO, E.; MANNA, P.; MASCELLIS, R.; BASILE, A.; BUONANNO, M.; CANTILENA, G.; ESPOSITO, A.; TEDESCHI, A.; MICHELE, C.; BELFIORE, O.; CATAPANO, I.; LUDENO, G.; SALINAS, K.; BROOK, A. LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agricultural Systems, v. 176, p. 102646, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0308521X19301465.

CALERA, A.; CAMPOS, I.; OSANN, A.; D’URSO, G.; MENENTI, M. Remote sensing for crop water management: from ET modelling to services for the end users. Sensors, v. 17, n. 5, p. 1104, 2017. Disponível em: https://www.mdpi.com/1424-8220/17/5/1104.

CARDENAS-LAILHACAR, B.; DUKES, M. D. Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural Water Management, v. 97, n. 5, p. 666-672, 2010. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378377409003631.

CASASSA, L.; KELLER, M.; HARBERTSON, J. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines. Molecules, v. 20, n. 5, p. 7820-7844, 2015. Disponível em: https://www.mdpi.com/1420-3049/20/5/7820/htm.

CENTENO, J. A. S. Sensoriamento remoto e processamento de imagens digitais. Curitiba: UFPR, p. 219, 2003.

CHEN, A.; ORLOV-LEVIN, V.; MERON, M. Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management. Agricultural water management, v. 216, p. 196-205, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S037837741831758X.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. Agrometeorologia – Jales/SP. Disponível em: https://www.embrapa.br/uva-e-vinho/dados-meteorologicos/jales. Acesso em: 05 nov 2019.

FABRE, S.; BRIOTTET, X.; LESAIGNOUX, A. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain. Sensors, v. 15, n. 2, p. 3262-3281, 2015. Disponível em: https://www.mdpi.com/1424-8220/15/2/3262/htm.

GAGO, J.; DOUTHE, C.; COOPMAN, R.E.; GALLEGO, P.P.; RIBAS-CARBO, M.; FLEXAS, J.; ESCALONA, J.; MEDRANO, H. UAVs challenge to assess water stress for sustainable agriculture. Agricultural water management, v. 153, p. 9-19, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/ S0378377415000293.

HOFFER, R. M.; JOHANNSEN, C. J. Ecological potentials in spectral signature analysis. Remote sensing in ecology, p. 1-16, 1969. Disponível em: https://www.researchgate.net/profile/Chris_J_Johannsen/publication /4661817_'Ecological_Potential_in_Spectral_Signatures_Analysis'/links/57db535308ae72d72ea38063.pdf

KRAMER, P. J.; BOYER, J. S. Water relations of plants and soils. Academic press, 1995.

MILLER, K. A.; LUCK, J.; HEEREN, D. M.; LO, T.; MARTIN, D.; BARKER, J. B. A geospatial variable rate irrigation control scenario evaluation methodology based on mining root zone available water capacity. Precision agriculture, v. 19, n. 4, p. 666-683, 2018. Disponível em: https://link.springer.com/article/10.1007/s11119-017-9548-z.

NAIN, A. S.; SINGH, K. K. Conceptualization of a framework of decision support system for agriculture in hilly region. Mausam, v. 67, n. 1, p. 195-204, 2016. Disponível em: https://metnet.imd.gov.in/mausamdocs/ 167116_F.pdf.

NAVARRO-HELLÍN, H.; MARTÍNEZ-DEL-RINCON, J.; DOMINGO-MIGUEL, R.; SOTO-VALLES, F.; TORRES-SÁNCHEZ, R. A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, v. 124, p. 121-131, 2016. Disponível em: https://www.sciencedirect.com/science/article/pii/S016816991630117X.

O’SHAUGHNESSY, S. A.; EVETT, S. R.; ANDRADE, M. A.; WORKNEH, F.; PRICE, J. A.; RUSH, C. M. Site-specific variable-rate irrigation as a means to enhance water use efficiency. Transactions of the ASABE, v. 59, n. 1, p. 239-249, 2016. Disponível em: https://elibrary.asabe.org/abstract.asp?aid=46423.

PARK, S.; RYU, D.; FUENTES, S.; CHUNG, H.; HERNÁNDEZ-MONTES, E.; O’CONNELL, M. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sensing, v. 9, n. 8, p. 828, 2017. Disponível em: https://www.mdpi.com/2072-4292/9/8/828.

POBLETE, T.; ORTEGA-FARIAS, S.; RYU, D. Automatic co registration algorithm to remove canopy shaded pixels in uav-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated cabernet sauvignon vineyard. Sensors, v. 18, n. 2, p. 397, 2018. Disponível em: https://www.mdpi.com/1424-8220/18/2/397.

PUERTO, P.; DOMINGO, R.; TORRES, R.; PÉREZ-PASTOR, A.; GARCÍA-RIQUELME, M. Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield. Agricultural water management, v. 126, p. 33-45, 2013. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378377413001108.

QUEBRAJO, L.; PEREZ-RUIZ, M.; PEREZ-URRESTARAZU, L.; MARTINEZ, G.; EGEA, G. Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosystems Engineering, v. 165, p. 77-87, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/ S1537511017300818.

REN, W.; WU, D.; QIN, L. Preliminary study on data collecting and processing of unmanned airship low altitude hyperspectral remote sensing. Ecology and Environmental Monitoring of Three Gorges, v. 1, p. 52-57, 2016.

SCHMITZ, M.; KUYPER, M. C. Soil moisture sensors in field application, a comparative study. Z. Bewässerungs wissenschaft, v. 33, p. 87-102, 1998.

SCHMITZ, M; SOURELL, H. Variability in soil moisture measurements. Irrigation Science, v. 19, n. 3, p. 147-151, 2000. Disponível em: https://link.springer.com/article/10.1007/s002710000015.

SHI, X.; WENTING, H.; TING, ZHAO.; JIANDONG, T. Decision Support System for Variable Rate Irrigation Based on UAV Multispectral Remote Sensing. Sensors, v. 19, n. 13, p. 2880, 2019. Disponível em: https://www.mdpi.com/1424-8220/19/13/2880.

SHIRANI, H.; HOSSEINIFARD, S. J.; HASHEMIPOUR, H. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran. Science of The Total Environment, v. 616, p. 881-888, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S0048969717329510.

SIDRA – Sistema IBGE de Recuperação Automática. Produção Agrícola Municipal. Disponível em: https://sidra.ibge.gov.br/tabela/1613#resultado. Acesso em: 05 nov 2019.

SILVA, D. C.; TOONSTRA, G. W. A.; SOUZA, H. L. S.; PEREIRA, T. A. J. Qualidade de ortomosaicos de imagens de VANT processados com os softwares APS, PIX4D e PHOTOSCAN. V Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife-PE, 2014.

SNYDER, R.L.; HANSON, B.R.; COPPOCK, R. How Farmers Irrigate in California; University of California Division of Agriculture and Nature Research: Davis, CA, USA, 1986; pp. 1–6. Disponível em: http://anrcatalog.ucanr.edu/pdf/21414e.pdf. Acesso em: 02 out. 2019.

SOULIS, K. X.; ELMALOGLOU, S; DERCAS, N. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agricultural Water Management, v. 148, p. 258-268, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S037837741400 3357.

STONE, K. C.; BAUER, P. J.; BUSSCHER, W. J.; MILLEN, J. A.; EVANS, D. E.; STRICKLAND, E. E. Variable-rate irrigation management using an expert system in the eastern coastal plain. Irrigation science, v. 33, n. 3, p. 167-175, 2015. Disponível em: https://link.springer.com/article/10.1007/s00271-014-0457-x.

WEIDONG, L.; BARET, F.; XINGFA, G.; QINGXI, T.; LANFEN, Z.; BING, Z. Relating soil surface moisture to reflectance. Remote sensing of environment, v. 81, n. 2-3, p. 238-246, 2002. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0034425701003479.

WEST, G.; KOVACS, K. Addressing groundwater declines with precision agriculture: an economic comparison of monitoring methods for variable-rate irrigation. Water, v. 9, n. 1, p. 28-45, 2017. Disponível em: https://www.mdpi.com/2073-4441/9/1/28.

YANG, G.; LIU, L.; GUO, P.; LI, M. A flexible decision support system for irrigation scheduling in an irrigation district in China. Agricultural water management, v. 179, p. 378-389, 2017. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378377416302657.

YANG, W.; LI, C.; YANG, H.; YANG, G.; FENG, H.; HAN, L. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), v. 34, n. 17, p. 68-75, 2018.

Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing. Remote Sensing, v. 11, n. 6, p. 605, 2019. Disponível em: https://www.mdpi.com/2072-4292/11/6/605.

ZHANG, Z.; BIAN, J.; HAN, W.; FU, Q.; CHEN, S.; CUI, T. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Nongye Gongcheng Xuebao / Transactions of the Chinese Society of Agricultural Engineering, v. 34, p. 77-84, 2018.

ZÚÑIGA-ESPINOZA, C.; ASPILLAGA, C.; FERREYRA, R.; SELLES, G. Response of table grape to irrigation water in the Aconcagua Valley, Chile. Agronomy, v. 5, n. 3, p. 405-417, 2015. Disponível em: https://www.mdpi.com/2073-4395/5/3/405.




DOI: https://doi.org/10.34117/bjdv6n4-272

Refbacks

  • There are currently no refbacks.