Estudo das transformações martensíticas em ligas niti via simulação de dinâmica molecular / Study of martensitic transformation in niti alloy by molecular dynamicssimulations

Authors

  • Yuri Rocha de Souza
  • Pedro Henrique P. de Souza
  • Luis César R. Aliaga

DOI:

https://doi.org/10.34117/bjdv6n4-175

Keywords:

Dinâmica molecular, Transformações de fases, Ligas, Lammps.

Abstract

As transformações de fases na liga NiTi foram estudadas usando simulações de dinâmica molecular (MD) sob o potencial modificado método do átomo imerso, MEAM. Ligas de composição equiatômica foram produzidas partindo da estrutura B2, aquecidas e resfriadas à taxa de 7 K/ps na faixa de temperaturas de 100 a 450 K. O comportamento térmico mostra uma bem definida histerese evidenciando as transformações martensíticas entre as fases B2 e B19´. Também se observa uma faixa bem definida de temperaturas, durante o resfriamento, em que a fase R está presente na estrutura da liga. Transformações martensíticas reversas foram obtidas, contudo, a formação da fase R não foi evidenciada durante o aquecimento.

 

 

References

Adharapurapu, R.R. (2007), Phase Transformations in Nickel-rich Nickel-Titanium Alloys: Influence of Strain-rate, Temperature, Thermomechanical Treatment and Nickel Composition on the Shape Memory and Superelastic Characteristics, UC San Diego Electronic Theses and Dissertations.

Aliaga, L. C. R. (2007), Seleção de ligas com alta tendência de formação de estrutura amorfa, Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, SP – Brasil.

Baskes, M.I. (1997), Determination of modified embedded atom method parameters for nickel, Mater. Chem. Phys. 50 (1997) 152).

Baskes, M.I (1992), Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727, M.I.

Chen, J.H.; Cao, R. (2015), Micromechanism of Cleavage Fracture of Metals: A Comprehensive Microphysical Model for Cleavage Cracking in Metals, Butterworth-Heinemann.

Coelho, R. S. A.; Gomes, R. M.; Melo, T. A. (2016), Estudo das propiedades térmicas e microestruturas da liga Cu -11,8Al-0,5B e passíveis de memória de forma. Congresso Brasileiro de Engenharia e Ciencia dos Materiais, 22°, 5532-5543.

Daw, M.S.; Baskes, M.I. (1983), Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29, 6443.

Finnis, M.; Sinclair, J.F. (1984), A simple empirical N-body potential for transition metals. Philosophical Magazine A, 50, 45-55.

Frenzel, E.P.; George, E.p.; Dlouhy, Ch.; Somsena, M.F.; Wagner, M.F-X.; Eggeler, G. (2010), Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Materialia 58, 3444 – 3458.

Haider, W.; Munroe, N. (2011), Assessment of Corrosion Resistance and Metal Ion Leaching of Nitinol Alloys, J Mater Eng Perform, 20 (4): 812–815.

Hank Childs, et al., (2012), VisIt: An End-User Tool ForVisualizing and Analyzing Very Large Data, High Performance Visualization--Enabling Extreme-Scale Scientific Insight, CRC press.

Haskins, J.B; Lawson, J.W, (2017), Finite Temperature Properties of NiTi from First Principles Simulations: Structure, Mechanics, and Thermodynamics, J Appl Phys. 121 (20).

ICSD 2019 https://icsd.fiz-karlsruhe.de/search/basic.xhtml.

Ishida H.; Hiwatari, Y. (2007), MD simulation of martensitic transformations in TiNi alloys with MEAM, Molecular Simulation, 33, 459–46.

Kellogg, J. L.; Kellogg, M.G. (2016), Nitinol heat engine with mechanical storage mechanism, United States Patent Application Publication, US 2016/0069331 A1.

Klinger, M.; Jager, A. (2015),Crystallographic Tool Box (CrysTBox): automated tools for transmission electron microscopists and crystallographers, J. Appl. Cryst. 48, 2012–2018.

Ko, W. S.; Grabowski, B.; Neugebauer, J. (2015), "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition", Physical Review B, 92(13), 134107. DOI: 10.1103/physrevb.92.134107.

Ko, W-S.; Grabowski, B.; Neugebauer, J. (2015), Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition, Phys. Rev. B 92, 134107.

Lagoudas, D.C, (2008), Shape Memory Alloys Modeling and Engineering Applications, Springer.

Lin, H.C.; Wu, S.W.; Chou,T.S.; Kao, H.P. (1991), The effects of cold rolling on the martensitic transformation of an equiatomicTiNi alloy. Acta Metall. Mater. 39, 2069 - 2080.

Morawiec, Stroz, D.; Chrobak, D. (1995), Effect of Deformation and Thermal Treatment of NiTi Alloy on Transition Sequence. J. Phys. IV 5, 205–209.

Otsuka, K. (1990), Introduction on the R-phase transition. Engineering aspects of shape memory alloys. Butterworth-Heinemann, 36-45.

Petoumenoua, E; Arndta, M.; Keiligb, L.; Reimannb, S.; Hoederathc, H.; Eliadesd, T.; Jägere, A.; Arndt, C.B,; (2016), Nickel concentration in the saliva of patients with nickel-titanium orthodontic appliances,American Journal of Orthodontics and Dentofacial Orthopedics 135, 59 – 66.

Petrini, L.;Migliavacca, F. (2011), Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy, Article ID 501483, 15p.

Plimpton, S. (1995), Fast Parallel Algorithms for Short–Range Molecular Dynamics. Journal of Computational Physics,117, 1-19.

Robertson,S. W.; Pelton, A. R.; Ritchie, R. O. (2012), Mechanical fatigue and fracture of Nitinol, International Materials Reviews 57, 1, 1 - 36.

Sachdeva,R.C.L.; Miyazaki, S. (2001), Nitinol as a Biomedical Material, Encyclopedia of Materials: Science and Technology.

Stroz, D. (2003), TEM studies of the R-phase transformation in a NiTi shape memory allou after thermo-mechanical treatment. Materials Chemistry and Physics. v. 81, 460-462.

Stukowski, A. (2010), Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering,18, 015012.

Todoroki, T.; Tamura, H. (1987), Effect of Heat Treatment After Cold Working on the Phase Transformation in TiNi Alloy. Trans. J. Inst. Met. 28, 83–94.

Wadood, A, (2016), Brief Overview on Nitinol as Biomaterial, Advances in Materials Science and Engineering, ID 4173138, 1 – 9.

Wu, S.K.; Lin,H.C.; Yen,Y.C. (1996), A study on the wire drawing of TiNi shape memory alloys. Materials Science and Engineering A 215 (1996) 113–119.

Zhang, X,; Sehitoglu, H. (2004), Crystallography of the B2 ? r ? B19' phase transformations in NiTi, Materials Science and Engineering: A374, 1–2, 292-302.

Zhang, J.; Jung, Y-G. (2018), Additive Manufacturing: Materials, Processes, Quantifications and Applications, Elsevier.

Published

2020-04-13

How to Cite

Souza, Y. R. de, Souza, P. H. P. de, & Aliaga, L. C. R. (2020). Estudo das transformações martensíticas em ligas niti via simulação de dinâmica molecular / Study of martensitic transformation in niti alloy by molecular dynamicssimulations. Brazilian Journal of Development, 6(4), 19067–19080. https://doi.org/10.34117/bjdv6n4-175

Issue

Section

Original Papers