Maternal exposure of triclosan causes fetal development restriction and female reproductive alterations in rat offspring / A exposição materna ao triclosan causa restrição ao desenvolvimento fetal e alterações reprodutivas femininas na prole de ratos

Eduardo Deon Fortunato, João Paulo de Arruda Amorim, Romário Willian Welter, Guilherme Bitencourt, Elaine Manoela Porto Amorim


Triclosan (TCS) is an antimicrobial agent, mainly used in manufactured care products, have been included as endocrine disrupters. The aim this study evaluated the effects of maternal exposure to TCS, during pregnancy and lactation, in the puberty, oestrous cycle and foliculogenisis in rat offspring. Therefore, thirty-two Wistar rat dams were distributed into 4 experimental groups (8 mothers/group), and gavage daily, throughout pregnancy and lactation, as follows: Group I - control: received only corn oil by gavage; Group II: received TCS diluted in corn oil at a dose of 75 mg/kg/day; Group III: TCS diluted in corn oil at a dose of 150mg/kg/day; Group IV: TCS diluted in corn oil at a dose of 300mg/kg/day. One female pup of each mother was selected and 90 days-old the female offspring were euthanized. The results showed the levels thyroid hormones thyroxine (T4) and triiodothyronine (T3) were reduced in the TCS mother, the thyroid stimulating hormone (TSH) were increases. The main litter weight was significativly minor in all TCS treated group animals; and the TCS exposed animals showed delay in the vaginal opening day and first estrous, indicative of delay in the onset of puberty, deregulation of oestrous cycle and decreased folliculogenic activity. We conclude that maternal exposure to triclosan during pregnancy and lactation causes intrauterine growth restriction, delay in the onset of puberty, deregulation of the oestrous cycle and reduction of folliculogenic activity in rat offspring.


Triclosan, endocrine disruptor, puberty, oestrous cycle, ovary, folliculogenesis, rat.

Full Text:



Adolfsson-Erici M, Petterson M, Parkkonen J, Sturve J. (2002). Triclosan, a commonly used bactericide found in human breast milk and in the aquatic environment in Sweden. Chemosphere. 46, 1485-1489. https://doi:10.1016/s0045-6535(01)00255-7.

Allmyr M, Adolfsson-Erici M, Mclachlan MS, Sandborgh-Englund G. (2006). Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Science of the Total Environment. 372, 87-93. https://doi: 10.1016/j.scitotenv.2006.08.007.

Amorim JP, Chuffa LG, Teixeira GR, Mendes LO, Fioruci BA, Martins OA. et al. (2011). Variations in maternal care alter corticosterone and 17beta-estradiol levels, estrous cycle and folliculogenesis and stimulate the expression of estrogen receptors alpha and beta in the ovaries of UCh rats. Reproductive Biology and Endocrinology. 22, 9:160. https://doi:10.1186/1477-7827-9-160.

Axeltad M, Boberg J, Vinggaard AM, Christiansen S, Hass U. (2013). Triclosan exposure reduces thyroxine levels in pregnant and lactanting rat dams and in directly exposed offspring. Food and Chemichal Toxicology. 59, 534-540. https://doi:10.1016/j.fct.2013.06.050.

Bitencourt G, Fortunato ED, Panis C, Amorim EMP, de Arruda Amorim JP. (2019). Maternal exposure to triclosan causes fetal development restriction, deregulation of the oestrous cycle, and alters uterine tissue in rat offspring. Environmental Toxicology. 34, 1105-1113. https://doi:10.1002/tox.22812.

Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. (2008). Urinary concentrations of triclosan in U. S. population: 2003-2004. Environmental Health Perspectives. 116, 303-307. https://doi:10.1289/ehp.10768.

Cao X, Hua X, Wang X, Chen L. (2017). Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Scientific Reports. London. 7, 44803. https://doi:10.1038/srep44803.

Chen J, Ahn KG, Gee NA, Gee SJ, Hammock BD, Lasley BL. (2007). Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicology and applied Pharmacology. 221, 278-284. https://doi:10.1016/j.taap.2007.03.015.

Coster SD, Larebeke NV. (2012). Endocrine-disruptors chemicals: Associated disorders and mechanisms of action. Journal of Environmental and Public Health. 2012, 1-52. https://doi:10.1155/2012/713696.

Crofton KM, Paul KB, Devito MJ, Hedge JM. (2007). Short-term in vivo exposure to water contaminant triclosan: Evidence for disruption of thyroxine. Environmental Toxicology and Pharmacology. 24, 194-197. https://doi:10.1016/j.etap.2007.04.008.

Cullinan MP, Palmer JE, Carle AD, West MG, Seymour GJ. (2012). Long term use of triclosan toothpaste and thyroid function. Science of the Total Environment. 416, 75–79. https://doi:10.1016/j.scitotenv.2011.11.063.

Dann AB., Hontela A. (2011). Triclosan: enviromental exposure, toxicity and mechanisms of action. Journal of. Applied Toxicology. 31, 285-311. https://doi:10.1002/jat.1660.

Dinwidie MT, Terry PD, Chen J. (2014). Recent evidence regarding trilosan and cancer risk. International Journal of Environmental Research and Public Health. 11, 2209-2217. https://doi:10.3390/ijerph110202209.

Doufas AG, Mastorakos G. (2000). The hypothalamic-pytuitary-thyroid axis and the female reproductive system. Annals of the New York Academy of Sciences. 900, 65-76. https://doi:10.1111/j.1749-6632.2000.tb06217.x.

Fang JL, Stingley RL, Beland FA, Harrouk W, Lumpkins DL, Howard P. (2010). Occurrence, efficacy, metabolism, and totoxicity of triclosan. Journal of Environmental Science and Health part C, Environmental Carcinogenisis and Ecotoxicology Reviews. 28, 147-171. https://doi:10.1080/10590501.2010.504978.

Feng Y, Zhang P, Zhang Z, Shi J, Jiao, Z, Shao B. (2016). Endocrine disrupting effects of triclosan on placenta of pregnant rats. Public Library of Science - PLoS One. 11, e0154758. https://doi:10.1371/journal.pone.0154758.

Goldman JM, Murr AS, Cooper RL. (2007). The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth defects research. Part B, Developmental and reproductive toxicology. 80, 84-97. https://doi:10.1002/bdrb.20106.

Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, et al. (2017). The Florence statement on Triclosan and Triclocarban. Environmental Health Perspectives. 125, 064501. https://doi:10.1289/EHP1788.

Hapon MB, Gamarra-Luques C, Jahn GA. (2010). Short term hypothireoidism affects ovarian function in the cycling rat. Reproductive Biology and Endocrinology. 8,14. https://doi:10.1186/1477-7827-8-14.

Hapon MB, Simoncini M, Via G, Jahn GA. (2003). Effect of hypothyroidism on hormone profiles in virgin, pregnant and lactating rats, and on lactation. Reproduction. 126, 371-382. https://doi:10.1530/rep.0.1260371.

Holemans K, Gerber RT, Meurrens K, De Clarck F, Poston L, Van Assche FA. (1999). Streptozotocin diabetes in the pregnant induces cardiovascular dysfunction in adult offspring. Diabetologia. 42, 81-89. https://doi:10.1007/s001250051117.

Honkisz E, Zieba-Przybylska D, Wojtowicz AK. (2012). The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells. Reproductive Toxicology 34, 385-392. https://doi:10.1016/j.reprotox.2012.05.094.

Ishibashi H, Matsumura N, Hirano M, Matsouka M, Shiratsuchi H, Ishibashi Y. et al. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology. 67, 167-179. https://doi:10.1016/j.aquatox.2003.12.005.

Jung EM, An BS, Choi KC, Jeung EB. (2012). Potential estrogenic activity of triclosan in the uterus of immature rats and rat pituitary GH3 cells. Toxicology Letters. 208, 142-148. https://doi:10.1016/j.toxlet.2011.10.017.

Karakosta P, Alegakis D, Georgiou V, Roumeliotaki T, Fthnou E, Vassilaki M. et al. (2012). Thyroid dysfunction and autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes. The Journal of Clinical Endocrinology and Metabolism. 97, 4464-4472. https://doi:10.1210/jc.2012-2540.

Kiyohara M, Son LS, Trutrui K. (2017). Involvement of gonadotropin-inhibitory hormone in pubertal disorders induced by thyroid status. Scientific reports. 7,1042. https://doi:10.1038/s41598-017-01183-8.

Koeppe ES, Ferguson KK, Colacino JA, Meeker JD. (2013). Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007–2008. Science of the Total Environment. 445-446, 299-305. https://doi:10.1016/j.scitotenv.2012.12.052.

Kumar V, Chakraborty A, Kural MR, Roy P. (2009). Alteration of testicular sterioidogenisis and histopathology of reproductive system in male rats treated with triclosan. Reproductive Toxicology. 27, 177-185. https://doi:10.1016/j.reprotox.2008.12.002.

Lan Z, Kim TH, Bi KS, Hui Chen X, Sik Kim H. (2013). Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male Sprague-dawley rats. Environmental Toxicology. 30, 83-91. https://doi:10.1002/tox.21897.

Lara RE, Dissen GA, Leyton V, Paredes A, Fuenzalida H, Fiedler JL, Ojeda SR. (2000). An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat. Endocrinology. 141, 1059-1072. https://doi:10.1210/endo.141.3.7395.

Marcondes FK, Bianchi FJ, Tanno AP. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Brazilian Journal of Biology. 62, 609-614.

Montagnini BG, Pernoncine KV, Borges LI, Costa NO, Moreira EG, Anselmo-Franci JA, Gerardin DCC. (2018). Investigation of the potential effects of triclosan as endocrine disruptor in female rats: Uterotrophic assay and two-generation study. Toxicology. 410, 152-165. https://doi:10.1016/j.tox.2018.10.005.

Niedziela M, Korman E. (2001). Severe hypothyroidism due to autoimmune atrophic thyroiditis-predicted target height and a plausible mechanism for sexual precocity. Journal of Pediatric Endocrinology and Metabolism. 14, 901-907. https://doi:10.1515/jpem.2001.14.7.901.

Paul KB, Hedge JM, Bansal R, Zoeller RT, Peter R, DeVito MJ, Crofton KM. (2012). Developmental triclosan exposure decreases maternal, fetal and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action. Toxicology. 300, 31-45. https://doi:10.1016/j.tox.2012.05.023.

Paul KB, Hedge JM, Devito MJ, Crofton KM. (2010). Short‐term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long–Evans rats. Toxicological Sciences. 113, 367–379. https://doi:10.1093/toxsci/kfp271.

Pollock T, Greville LJ, Tang B, DeCatanzaro D. (2016). Triclosan elevates estradiol levels in serum and tissues of cycling and peri-implantation female mice. Reproductive Toxicology. 65, 394-401. https://doi:10.1016/j.reprotox.2016.09.004.

Shekhar S, Sood S, Showkat S, Lite C, Chandrasekhar A, Vairamani M, Santosh, W. (2017). Detection of phenolic endocrine disrupting chemicals from maternal blood plasma and amniotic fluid in Indian population. General and Comparative Endocrinology. 241, 100-107.https://doi:10.1016/j.ygcen.2016.05.025.

Smart JL, Dobbing J. (1971). Vulnerability of developing brain: II. Effects of early nutritional deprivation on reflex ontogeny and development of behavior in the rat. Brain Research. v. 85-95. https://doi:10.1016/0006-8993(71)90526-9.

Stoker TE, Gibson EK, Zorrila LM. (2010). Triclosan exposure modulates estrogen-dependent responses in the female wistar rats. Toxicological Sciences. 117, 45-53. https://doi:10.1093/toxsci/kfq180.

Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K. (2004). Effects of triclosan on various aquatic organisms. Environmental Sciences. 11, 133-140. https:// doi: not available.

Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ. Gunderson MP. et al. (2006). The bactericidal agent triclosan modulates thyroid hormone-assicuated gene expretion and disrupts postembryonic anurun development. Aquatic Toxicology. Amsterdam. 80, 217-227. https://doi:10.1016/j.aquatox.2006.08.010.

Walker CL. (2016). Minireview: Epigenomic Plasticity and Vulnerability to EDC Exposures. Molecular Endocrinology. 30, 848-855. https://doi:10.1210/me.2016-1086.

Wang X, Chen X, Feng X, Chang F, Chen M, Xia Y, Chen L. (2015). Triclosan causes spontaneous abortion accompanied by decline of strongen sulfotransferase activity in humans and mice. Scientific Reports. London. 5, 507-513. https://doi:10.1038/srep18252.

Weber G, Vigone MC, Stroppa L, Chiumello G. (2003). Thyroid function ant puberty. Journal of Pediatric Endocrinology and Metabism. 2, 253-257. https://doi: not avaliable.

Wei L, Qiao P, Shi Y, Ruan Y, Yin J, Wu Q, Shao B. (2017). Triclosan/Triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clinica Chimica Acta. 466, 133-137. https://doi:10.1016/j.cca.2016.12.024.

Weiss L, Arbuckle TE, Fisher M, Ramsay T, Mallick R, Hauser, R. et al. (2015). Temporal variability and sources of triclosan exposure in pregnancy. International Journal of Hygiene and Environmental Health. 218, 507-513. https://doi:10.1016/j.ijheh.2015.04.003.

Wu Y, Beland FA, Fang JL. (2016). Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, andbisphenol A on the iodide uptake, thyroid peroxidase activity, andexpression of genes involved in thyroid hormone synthesis. Toxicology in Vitro. 32,310-319. https://doi:10.1016/j.tiv.2016.01.014.

Xue J, Wu Q, Sakthivel S, Pavithran PV, Vasukutty JR, Kannan K. (2015). Urinary levels of endocrine disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens and triclosan in obese and non-obese Indian children. Environmental Research.137,120-128. https://doi: 10.1016/j.envres.2014.12.007.

Zhu W, Zhang Z, Tong C, Xie C, Fan G, Zhao S, et al. (2016). Enviromental exposure of triclosan and semen quality. International Journal of Environment Research and Public. Health. 13,224. https://doi:10.3390/ijerph13020224.

Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM., Setzer WR, Cooper RL, Stocker TE. (2009). The Effects of Triclosan on Puberty and Thyroid Hormones in Male Wistar Rats. Toxicological Sciences. 107, 56–64. https://doi:10.1093/toxsci/kfn225.



  • There are currently no refbacks.