Influence of post-harvest ozone application on the Epicarp of 'Pedro Sato' guava fruits under storage conditions / Influência da aplicação de ozônio pós-colheita no Epicarp de frutos de guava 'Pedro Sato' sob condições de armazenamento

Rodrigo de Oliveira Simões, Alisson Santos Lopes da Silva, Lêda Rita D’Antonino Faroni, Luiz Carlos Chamhum Salomão, Gutierres Nelson Silva, Márcia Monteiro dos Santos, Ronaldo Paulo Monteiro

Abstract


The expanding concern of consumers and public health authorities about the presence of pesticide residues on food has encouraged research on alternative methods to control post-harvest diseases. The objective of this study was to evaluate the influence of post-harvest ozone application on the sensibility of 'Pedro Sato' guava fruits under storage conditions. The experiments were performed in split-plot scheme: the plots were ozone concentrations (0, 65, 95, 185, 275, 370 and 460 μg L-1) injected at 2 L min-1 into a fumigation chamber, and subplots were days of evaluation or harvest (0, 1, 3, 5, 7 and 9 days) in a completely randomized design with 3 replicates. 'Pedro Sato' guava fruits responded to ozone-induced oxidative stress at concentrations higher than 185 μg L-1, causing visible anomalies, with green intervenal spots and red-brownish pustule on the epicarp. Although the mechanisms of ozone application on guava fruits are not entirely elucidated, it is known that the mechanisms that justify the leaf symptoms on this crop, exposed to different ozone concentrations, may help clarifying the observed anomalies on the epicarp when fruits are subjected to post-harvest ozone application

Keywords


Ozone; Post-harvest periodization; Guava; Oxidative stress.

Full Text:

PDF

References


AZZOLINI, M.; JACOMINO, A. P.; BRON, I. U. (2004). Índices para avaliar qualidade pós-colheita de goiabas em diferentes estádios de maturação. Pesquisa Agropecuária Brasileira, 39(1), 139-145.

BAILEY, J. A.; O’CONNELL, R. J.; PRING, R. J.; NASH, C. (1992). Infection strategies of Colletotrichum species. In: BAILEY, A. J.; JEGER, J. M. Colletotrichum: biology, pathology and control. Oxford: British Society for Plant Pathology, 1(1), 88-120.

BIALKA, K. L.; DEMIRCI, A. (2007). Utilization of Gaseous Ozone for the Decontamination of Escherichia coli O157:H7 and Salmonella on Raspberries and Strawberrries. Journal of Food Protection, 70(1), 1093-1098.

CLESCERL, L. S.; GREENBERG, A. E.; EATON, A. D. (2000). Standard methods for the examination of water and wastewater. Denver: Americam Water Works Association.

EVANGELISTA, R. M. (1999). Qualidade de mangas ‘Tommy Atkins’ armazenadas sob refrigeração e tratadas com cloreto de cálcio. Lavras: UFLA.

FURLAN, C. M.; MORAES, R. M.; BULBOVAS, P.; DOMINGOS, M.; SALATINO, A.; SANZ, M. J. (2007). Psidium guajava ‘Paluma’ (the guava plant) as a new bio-indicator of ozone in the tropics. Environmental Pollution, 147(1), 691-695.

HALLIWELL, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(1), 312-322.

HEATH, R. L.; LEFOHN, A. S.; MUSSELMAN, R. C. (2009). Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. Atmospheric Environment, 43(1), 2919-2928.

KRUPA, S. V.; MANNING, W. J. (1988). Atmospheric ozone: formation and effects on vegetation. Environmental Pollution, 50(1), 101-137.

LIMA FILHO, R. M.; OLIVEIRA, S. M. A.; MENEZES, M. (2003). Caracterização enzimática e patogenicidade cruzada de Colletotrichum spp. associados a doenças de pós-colheita. Fitopatologia Brasileira, 28(1), 620-625.

MITTLER, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(1), 405-410.

MORAES, R. M.; FURLAN, C. M.; MEIRELLES, S. T.; SANTOS, D. Y. A. C.; SOUZA, S. R.; VIOLA, S. R. A. S.; REZENDE, F. M.; BARBOSA, J. M.; DOMINGOS, R. L. (2011). Avaliação da sensibilidade da goiabeira ‘Pedro Sato’ ao ozônio. Pesquisa Agropecuária Brasileira, 46(1), 971-978.

MUDD, J. B. (1996). Biochemical basis for the toxicity of ozone. In: M. Yunus & M. Iqbal (eds.). Plant Response to Air Pollution. Jonh Wiley & Sons Ltd., New York, p.267-283.

NOVAK, K., SKELLY, J. M., SCHAUB, M., KRÄUCHI, N., HUG, C.; LANDOLT, W.; BLEULER, P. (2003). Ozone air pollution and foliar injury development on native plants of Switzerland. Environmental Pollution, 125(1), 41-52.

PINA, J. M.; MORAES, R. M. (2007). Ozone-induced foliar injury in saplings of Psidium guajava ‘Paluma’ in São Paulo, Brazil. Chemosphere, 66(1), 1310-1314.

PUIA, C.; OROIAN, I.; FLORIAN, V. (2004). Effect of Ozone Exposure on Phytopathogenic Microorganisms on Storage Aplles. Journal of Agricultural Sciences, 15(1), 9-13.

SAEG – Sistema para Análises Estatísticas, (2007). Versão 9.1: Fundação Arthur Bernardes - UFV - Viçosa.

SALVADOR, A.; ABAD, I.; ARNAL, L.; MATÍNEZ-JÁVEGA, J. M. (2006). Effect of Ozone on Postharvest Quality of Persimmon. Journal of Food Science, 71(1), 443-446.

SÁNCHES, M. J. S.; PEÑA, G. S.; LORENTE, V. C.; GALLEGO, T. M.; ALBERT, J. C. (2002). La contaminación atmosférica de los bosques: Guía para la identificación de los daños visibles causados por Ozono. Madrid: Ministerio del Medio Ambiente.

SILVA, M. P. F. (1982). Manejo pós-colheita da manga. Belo Horizonte. Informe Agropecuário, 8(1), 45-47.

SOUZA, R. C.; AMATO NETO, J. (2009). As transações entre supermercados europeus e produtores brasileiros de frutas frescas. Gestão & Produção, 16(1), 489-501.

TRESMONDI, F.; ALVES, E. S. (2011). Structural changes in Psidium guajava ‘Paluma’ leaves exposed to tropospheric ozone. Acta Botanica Brasilica, 25(1), 542-548.

WATANABE, T.; ROZANE, D. E.; NATALE, W.; FURLAN, C. (2011). M. Avaliação da influência de substâncias fenólicas e carotenóides na anomalia do epicarpo da goiaba, “anelamento”. Revista Brasileira de Fruticultura, 33(1), 8-13.




DOI: https://doi.org/10.34117/bjdv6n4-153

Refbacks

  • There are currently no refbacks.