Increased acetic acid removal from sugarcane bagasse hemicellulosic hydrolysate by the yeast Issatchenckia occidentalis Y1’a in absence of glucose / Aumento da remoção de ácido acético a partir do hidrolisado hemicelulósico do bagaço de cana-de-açúcar pela levedura Issatchenckia occidentalis Y1'a na ausência de glicose

Bruna Caroline Marques Gonçalves, Messias Borges Silva, Silvio Silvério da Silva


Second generation ethanol is an attractive alternative to increase the worldwide ethanol production by utilizing agro-industrial waste crops. A pretreatment step is mandatory to expose sugars from vegetal biomass, which should be low cost and highly efficient. Even though dilute-acid pretreatment satisfies these prerequisites, metabolism inhibitors are generated during such process. In this study, I. occidentalis Y1’a was able to grow in no supplemented sugarcane bagasse hemicellulosic hydrolysate by using acetic acid as energy source. However acetic acid removal has been delayed in glucose-added medium. Given the fact that acetic acid is considered an inhibitor of microbial metabolism during ethanol production, this finding characterizes an efficient and low-cost hemicellulosic hydrolysate biodetoxification. Fermentation was successful with an ethanol yield (YP/S) of 0.26 g/g and volumetric ethanol productivity (Qp) of 0.14 g/L.h, indicating that dilute-acid pretreatment followed by biodetoxification and xylose fermentation by Candida shehatae UFMG52.2 are promising ways for 2G-bioethanol production.



Second generation bioethanol, biodetoxification, box behnken design

Full Text:



Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. doi:10.1016/j.biotechadv.2011.05.005

Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. doi: 10.1016/j.biortech.2009.11.093

Canilha, L., Santos, V. T. O., Rocha, G. J. M., Almeida E Silva, J. B., Giulietti, M., Silva, S. S., … Carvalho, W. (2011). A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology and Biotechnology, 38(9), 1467–1475. doi: 10.1007/s10295-010-0931-2

Cao, G., Ximenes, E., Nichols, N. N., Zhang, L., & Ladisch, M. (2013). Biological abatement of cellulase inhibitors. Bioresource Technology, 146, 604–610. doi: 10.1016/j.biortech.2013.07.112

Hasunuma, T., Hori, Y., Sakamoto, T., Ochiai, M., Hatanaka, H., Kondo, A., … Ochiai, M. (2014). Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microbial Cell Factories, 13(1), 112–145. doi: 10.1186/s12934-014-0145-9

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. doi: 10.1016/j.biortech.2008.05.027

Kim, S. K., Park, D. H., Song, S. H., Wee, Y. J., & Jeong, G. T. (2013). Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 36(6), 659–666. doi: 10.1007/s00449-013-0888-4

Kumar, P., Kumar, P., Barrett, D. M., Barrett, D. M., Delwiche, M. J., Delwiche, M. J., … Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for ef cient hydrolysis and biofuel production. Industrial and Engineering Chemistry (Analytical Edition), 3713–3729. doi: 10.1021/ie801542g

Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24(3–4), 151–159. doi: 10.1016/S0141-0229(98)00101-X

López, M. J., Moreno, J., Nichols, N. N., Dien, B. S., & Bothast, R. J. (2004). Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Applied Microbiology and Biotechnology, 64(1), 125–131. doi: 10.1007/s00253-003-1401-9

Martin, C., Alriksson, B., Sjode, A., Nilvebrant, N. O., & Jonson, L. J. (2007). Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Applied Biochemistry And Biotechnology, 136, 339–352.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. doi:10.1016/j.biortech.2004.06.025

Mussatto, S., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93(1), 1–10. doi:10.1016/j.biortech.2003.10.005

Prasad, S., Singh, A., & Joshi, H. C. (2007). Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 50(1), 1–39. doi:10.1016/j.resconrec.2006.05.007

Rodrigues, R., Felipe, M., Silva, J. B. A. e, Vitolo, M., & Gómez, P. V. (2001). The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation. Brazilian Journal of Chemical Engineering, 18(3), 299–311. doi:10.1590/S0104-66322001000300009

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folic-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

Sluiter, A., Hames, B., Ruiz, R. O., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2004). Determination of structural carbohydrates and lignin in biomass. Biomass Analysis Technology Team Laboratory Analytical Procedure, 2011(July), 1–14. doi: NREL/TP-510-42618

Soares, L. C. S. R., Chandel, A. K., Pagnocca, F. C., Gaikwad, S. C., Rai, M., & da Silva, S. S. (2016). Screening of yeasts for selection of potential strains and their utilization for in situ microbial detoxification (ISMD) of sugarcane bagasse hemicellulosic hydrolysate. Indian Journal of Microbiology, 56(2), 172–181. doi:10.1007/s12088-016-0573-9

SUN, Y., & CHENG, J. (2005). Dilute acid pretreatment of ryce straw and bermudagrass for ethanol production. Bioresource Technology, 96(14), 1599–1606. doi:10.1016/j.biortech.2004.12.022

Ulbricht, R. J., Northup, S. J., & Thomas, J. a. (1984). A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Toxicological Sciences, 4(5), 843–853. doi:10.1093/toxsci/4.5.843

Vithanage, L. N. G., Barbosa, A. M., Borsato, D., & Dekker, R. F. H. (2015). Value adding of poplar hemicellulosic prehydrolyzates: Laccase production by Botryosphaeria rhodina MAMB-05 and its application in the detoxification of rrehydrolyzates. BioEnergy Research, 8, 657–674. doi:10.1007/s12155-014-9547-0

Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86(1), 88–95. doi:10.1002/bit.20043

Yu, Y., Feng, Y., Xu, C., Liu, J., & Li, D. (2011). Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresource Technology, 102(8), 5123–5128. doi: 10.1016/j.biortech.2011.01.067

Zhang, D., Ong, Y. L., Li, Z., & Wu, J. C. (2013). Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm. doi: 10.1016/j.bej.2013.01.003



  • There are currently no refbacks.