Influence of cooking and drying in structural quality and shelf life of quinoa (chenopodium quinoa) negra ayrampo / Influência do cozimento e secagem na qualidade estrutural e na vida útil da quinoa (chenopodium quinoa) negra ayrampo

Huamani Huamani Alberto Luis, Ponce Ramírez Juan Carlos, Agustín Julián Portuguez Maurtua, Jack Edson Hernandez Mavila, Wiler Hugo De La Cruz Quispe, Abrahán Trejo Espinoza, Fredy Rober Pariona Escalante


Quinoa (Chenopodium quinoa Willd) is a pseudocereal native to the Andean regions of South America. If compared with most cereals, quinoa seeds have a higher nutritional value (Matiacevich et al., 2006) with a protein content that ranges between 12% and 23% (Abugoch et al., 2008; Ando et al., 2002; Jancurová et al., 2009; Koziol, 1992; Ruales and Nair, 1992). The objective of this study was to optimize cooking with saturated steam and high temperature dehydration of quinoa (Chenopodium quinoa). The multiple response surface optimization methodology was applied with independent variables (saturated vapor pressure and cooking time) and as a response variable (gelatinization, water adsorption index and cotyledon detachment). A vertical cooker with steam generator was used (Item: HL-340, Serial No. 806727, Gemmy Industrial Corp. U.S.A.). The results and conclusion of cooking were: The results of cooking and dehydration, are due to the behavior of starch due to the effect of saturated steam pressure and cooking process time. In gelatinization the internal starch hydrogen bonds are replaced by starch-water bonds (Pardhi et al., 2016), it is an irreversible process, it consists of granular swelling, native crystalline fusion, birefringence loss and starch solubilization (Ji et al., 2017). The solubility index indicates the degree of association (intragranular bonds) between starch polymers (amylose and amylopectin) (Araujo et al., 2004). The optimum cooking values were, vapor pressure was 1,55 kgf cm-2, time of 10 minutes and dehydration temperature 82 ° C, gave good results in keeping the whole grain of instant quinoa with a gelatinization of starch in 93,82% and a 2,54 minutes rehydration.


Chenopodium quinoa Willd, steam pressure cooking, high temperature dehydration.

Full Text:



AOAC (1990). Official methods of analysis (15th ed.). Washington, DC: Association of Official Analytical Chemists.

Official Analytical Chemists.

Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food dehydration and product structure. Trends in Food Science & Technology, 14(10), 432-437. doi:

Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34(Supplement C), 29-43. doi:

Araujo, C., Alicia, M. R., & Padilla, F. (2004). Caracterización del almidón nativo de Dioscorea bulbifera L. .

Arendt, E. K., & Zannini, E. (2013). 12 - Quinoa Cereal Grains for the Food and Beverage Industries (pp. 409-438): Woodhead Publishing.

Barampama, Z., & Simard, R., E. (1995). Effects of soaking, cooking and fermentation on composition, in-vitro starch digestibility and nutritive value of common beans. Plant foods for human nutrition, 48, 349 - 365.

Beck, S., Bouchard, J., & Berry, R. (2012). Dispersibility in Water of Dried Nanocrystalline Cellulose. Biomacromolecules, 13(5), 1486-1494. doi:10.1021/bm300191k

Birch, G. G., & Priestley, R. J. (1973). Degree of Gelatinisation of Cooked Rice. Starch - Stärke, 25(3), 98-100. doi:10.1002/star.19730250308

Corzo, O., Bracho, N., Vásquez, A., & Pereira, A. (2008). Optimization of thin layer drying process for coroba slices (Vol. 85).

Corzo, O., & Gomez, E. R. (2004). Optimization of osmotic dehydration of cantaloupe using desired function methodology. Journal of Food Engineering, 64(2), 213-219. doi:

Chen, X., Guo, L., Chen, P., Xu, Y., Hao, H., & Du, X. (2017). Investigation of the high-amylose maize starch gelatinization behaviours in glycerol-water systems. Journal of Cereal Science, 77(Supplement C), 135-140. doi:

Déléris, I., & Wallecan, J. (2017). Relationship between processing history and functionality recovery after rehydration of dried cellulose-based suspensions: A critical review (Vol. 246).

Derringer, G. S., Ronald. (1980). Simultaneous Optimization of Several Response Variables. Journal of Quality Technology,, 12, 214–219.

Encina-Zelada, C., Cadavez, V., Pereda, J., Gómez-Pando, L., Salvá-Ruíz, B., Teixeira, J. A., . . . Gonzales-Barron, U. (2017). Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy. LWT - Food Science and Technology, 79, 126-134. doi:

Fang, L., & Catchmark, J. M. (2014). Structure characterization of native cellulose during dehydration and rehydration. Cellulose, 21(6), 3951-3963. doi:10.1007/s10570-014-0435-8

Fernandes Diniz, J. M. B., Gil, M. H., & Castro, J. A. A. M. (2004). Hornification—its origin and interpretation in wood pulps. Wood Science and Technology, 37(6), 489-494. doi:10.1007/s00226-003-0216-2

Forny, L., Marabi, A., & Palzer, S. (2011). Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technology, 206(1), 72-78. doi:

Freedman, D., Pisani, R., & Purves, R. (2007). Statistics (4th edn): Norton, New York.

Giri, S. K., & Prasad, S. (2007). Optimization of Microwave-Vacuum Drying of Button Mushrooms Using Response-Surface Methodology. Drying Technology, 25(5), 901-911. doi:10.1080/07373930701370407

Golestani, R., Raisi, A., & Aroujalian, A. (2013). Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient (Vol. 31).

Graf, B. L., Rojas-Silva, P., Rojo, L. E., Delatorre-Herrera, J., Baldeón, M. E., & Raskin, I. (2015). Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431-445. doi:10.1111/1541-4337.12135

Helrick, K. (1990). Official methods of analysis Official methods of analysis: AOAC.

Jafari, M., Koocheki, A., & Milani, E. (2017). Effect of extrusion cooking of sorghum flour on rheology, morphology and heating rate of sorghum–wheat composite dough. Journal of Cereal Science, 77, 49-57. doi:

Ji, Z., Yu, L., Liu, H., Bao, X., Wang, Y., & Chen, L. (2017). Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios. Food Hydrocolloids, 72, 331-337. doi:

Jiao, A., Xu, X., & Jin, Z. (2014). Modelling of dehydration–rehydration of instant rice in combined microwave-hot air drying. Food and Bioproducts Processing, 92(3), 259-265. doi:

Kaur, S., Sarkar, B. C., Sharma, H. K., & Singh, C. (2009). Optimization of Enzymatic Hydrolysis Pretreatment Conditions for Enhanced Juice Recovery from Guava Fruit Using Response Surface Methodology. Food and Bioprocess Technology, 2(1), 96-100. doi:10.1007/s11947-008-0119-1

Khan, M. I. H., Wellard, R. M., Nagy, S. A., Joardder, M. U. H., & Karim, M. A. (2017). Experimental investigation of bound and free water transport process during drying of hygroscopic food material. International Journal of Thermal Sciences, 117, 266-273. doi:

Kumar, D., Prasad, S., & Murthy, G. S. (2014). Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. J Food Sci Technol, 51(2), 221-232. doi:10.1007/s13197-011-0487-9

Leite, T. S., de Jesus, A. L. T., Schmiele, M., Tribst, A. A. L., & Cristianini, M. (2017). High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT - Food Science and Technology, 76, 361-369. doi:

Li, G., & Zhu, F. (2017a). Amylopectin molecular structure in relation to physicochemical properties of quinoa starch. Carbohydrate Polymers, 164, 396-402. doi:

Li, G., & Zhu, F. (2017b). Physicochemical properties of quinoa flour as affected by starch interactions. Food Chemistry, 221, 1560-1568. doi:

Li, H., Prakash, S., Nicholson, T. M., Fitzgerald, M. A., & Gilbert, R. G. (2016). The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chemistry, 196, 702-711. doi:

Majdi, H., Esfahani, J. A., & Mohebbi, M. (2019). Optimization of convective drying by response surface methodology. Computers and Electronics in Agriculture, 156, 574-584. doi:

Martinez Delfa, G., Olivieri, A., & Boschetti, C. E. (2009). Multiple response optimization of styrene–butadiene rubber emulsion polymerization. Computers & Chemical Engineering, 33(4), 850-856. doi:

Mestry, A. P., Mujumdar, A. S., & Thorat, B. N. (2011). Optimization of Spray Drying of an Innovative Functional Food: Fermented Mixed Juice of Carrot and Watermelon. Drying Technology, 29(10), 1121-1131. doi:10.1080/07373937.2011.566968

Montgomery, D. C. (2017). Design and analysis of experiments: John wiley & sons.

Mota, C., Nascimento, A. C., Santos, M., Delgado, I., Coelho, I., Rego, A., . . . Castanheira, I. (2016). The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysis, 49, 57-64. doi:

Musielak, G., Mierzwa, D., & Kroehnke, J. (2016). Food drying enhancement by ultrasound – A review. Trends in Food Science & Technology, 56, 126-141. doi:

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments: John Wiley & Sons.

Pardhi, S. D., Singh, B., Nayik, G. A., & Dar, B. N. (2016). Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. Journal of the Saudi Society of Agricultural Sciences. doi:

Pérez-Francisco, J. M., Cerecero-Enríquez, R., Andrade-González, I., Ragazzo-Sánchez, J. A., & Luna-Solano, G. (2008). Optimization of Vegetal Pear Drying Using Response Surface Methodology. Drying Technology, 26(11), 1401-1405. doi:10.1080/07373930802333601

Prothon, F., Ahrné, L., & Sjöholm, I. (2003). Mechanisms and Prevention of Plant Tissue Collapse during Dehydration: A Critical Review (Vol. 43).

Roudaut, G., & Debeaufort, F. (2011). 3 - Moisture loss, gain and migration in foods Food and Beverage Stability and Shelf Life (pp. 63-105): Woodhead Publishing.

Srichuwong, S., Curti, D., Austin, S., King, R., Lamothe, L., & Gloria-Hernandez, H. (2017). Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 233, 1-10. doi:

Wang, R., Chen, C., & Guo, S. (2017). Effects of drying methods on starch crystallinity of gelatinized foxtail millet (α-millet) and its eating quality. Journal of Food Engineering, 207, 81-89. doi:

Žepič, V., Fabjan Erika, Š., Kasunič, M., Korošec Romana, C., Hančič, A., Oven, P., . . . Poljanšek, I. (2014). Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC) Holzforschung (Vol. 68, pp. 657).

Zhao, D., Palaparthi, A. D., Huang, Q., Fu, X., Liu, H., & Yu, L. (2015). Effects of ionic liquid 1-allyl-3-methylimidazolium chloride treatment on the microstructure and phase transition of cornstarch. Industrial Crops and Products, 77, 139-145. doi:



  • There are currently no refbacks.