In vitro organogenesis in tomato cultivars is enhanced by gas exchange and application of ultrasound / A organogênese in vitro de cultivares de tomate é aumentada pela promoção das trocas gasosas e ultrassom

Denise Fernandes, Débora Márcia Silva Freitas, Diego Silva Batista, Cleber Witt Saldanha, Jéssica Costa Santos, Marcelo Francisco Pompelli, Wagner Campos Otoni


The success of in vitro regeneration protocols is dependent of biological, chemical and physical factors. The manipulation of the microenvironment by enhancing gas exchange and ultrasound are physical improvements that potentially contribute to optimize in vitro responses. The present study evaluated the effect of gas exchange, by natural ventilation, on in vitro germination and further regeneration competence of explants exposed to sonication. For this, three tomato genotypes ‘Moneymaker’, ‘NCEBR-2’ and ‘Santa Clara’. Cotyledonary and hypocotiledonary explants were subjected to ultrasound times (0, 3, 6, and 9 seconds) in order to figure out its influence on morphogenesis and regeneration. The results appoint the higher that gas exchange increased morphogenic growth responses in all the genotypes with a significant increase in cotyledon area and hypocotyl length in germination and biomass accumulation. The sonication time influenced the number of shoots higher than 0.5 cm and number of leaflets, showing an interaction between sonication and sealing type, highlighting the effect of exposure time to sonication on morphogenesis. In this study, we show for the first time the stimulation of organogenesis by the interaction of physical factors in in vitro culture: the use of high quality explants, obtained by enhanced gas exchange and the application of ultrasound. We suggest that these factors significant increase the quantity of organogenesis and reducing the time consumed in the in vitro process, using simple, reliable and cheap treatments as gas exchange facilitators caps and ultrasound.



gas exchange, plant regeneration, ultrasound, micropropagation

Full Text:



Ananthakrishnan, G., Xia, X., Amutha, S., Singer, S., Muruganantham, M., Yablonsky, S., Fischer, E., Gaba, V., 2007. Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep. 26, 267-276.

Batista, D.S., Dias, L.L.C., Rêgo, M.M., Saldanha, C.W., Otoni, W.C., 2017. Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Ciên. Rural 47, 1-6.

Bebeli, P.J., Mazzucato, A., 2008. The Solanaceae - a review of recent research on genetic resources and advances in the breeding of tomato, pepper and eggplant, In: Passam, H. (Ed.), The European Journal of Plant Science and Biotechnology. Agricultural University of Athens, Athens, Greece, pp. 31-44.

Benikhlef, L., L’Haridon, F., Abou-Mansour, E., Serrano, M., Binda, M., Costa, A., Lehmann, S., Métraux, J.-P., 2013. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. Bio. Med. Central Plant Bio. 13, 133-145.

Bhatia, S., Sharma, K., 2015. Microenvironmentation in Micropropagation, In: Bhatia, S., Sharma, K., Dahiya, R., Bera, T. (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences 1st Edition. Academic Press, pp. 345-360.

Buddendorf-Joosten, J.M.C., Woltering, E.J., 1996. Controlling the gaseous composition in vitro - description of a flow system and effects of the clifferent gaseous components on in vitro growth of potato plantlets. Sci. Hort. 65, 11-23.

Carrari, F., Fernie, A.R., 2006. Metabolic regulation underlying tomato fruit development. J. Exp. Bot. 57, 1883-1897.

Chopra, R., Aparpa, R., Saini, R., 2012. Use of sonication and vacuum infiltration for Agrobacterium - mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci. Hort. 143, 127-134.

Collonier, C., Fock, K.V., Rotino, G.L., Daunay, M.C., Lian, Y., Mariska, I.K., Rajam, M.V., Servaes, A., Ducreux, G., Sihachakr, D., 2001. Applications of biotechnology in eggplant. Plant Cell Tiss. Organ Cult. 65, 91-107.

Costa, M.G.C., Guimarães, L.M.S., Guimarães, G.A.M., Nogueira, F.T.S., 2008. Transformação genética de tomateiro, In: Torres, A.C., Dusi, A.N., Santos, M.D.M. (Eds.), Transformação genética de plantas: teoria e prática. Embrapa Hortaliças, Brasília, pp. 145-161.

Cruz, C.D., 2013. GENES – A software package for analysis in experimental statistics and quantitative genetics. Acta Sci. 35, 271-276.

Dong, L., Yong, W.J., Lin, L.D., Wu, J.Y., 2002. Enhancement of shikonin production in singleand two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound. Biotechnol. Bioeng. 78, 81-88.

Elsner, H.I., Lindblad, E.B., 1989. Ultrasonic degradation of DNA. DNA Cell Biol. 8.

Fu, Y.K., Miller, M.W., Lange, C.S., dan Griffiths, T., Kaufman, G.E., 1980. Modification of cysteamine of ultrasound lethality to Chinese hamster V-79 cells. Ultrasound Med. Biol. 6, 39-46.

Fujiwara, K., Kozai, T., 1995. Physical microenvironment and its effects, In: Atiken-Christie, J., Kozai, T., Smith, M.A.L. (Eds.), Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Netherlands, pp. 319-369.

Fuoco, R., Bogani, P., Capodaglio, G., Del Bubba, M., Abollino, O., Giannarelli, S., Spiriti, M.M., Muscatello, B., Doumett, S., Turetta, C., Zangrando, R., Zelano, V., Buiatti, M., 2013. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene. J. Plant Physiol. 170, 668-675.

Furusawa, Y., Kondo, T., 2016. DNA damage induced by ultrasound and cellular responses. Mol. Biol. 6, 1-6.

Johnson, H.E., Broadhurst, D., Goodacre, R., Smith, A.R., 2003. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62, 919-928.

Kiferle, C., Lucchesini, M., Maggini, R., Pardossi, A., Mensuali-Sodi, A., 2014. In vitro culture of sweet basil: gas exchanges, growth, and rosmarinic acid production. Biol. Plant. 58, 601-610.

Koetle, M.J., Baskaran, P., Finnie, J.F., Soos, V., Balázs, E., van Staden, J., 2017. Optimization of transient GUS expression of Agrobacterium-mediated transformation in Dierama erectum Hilliard using sonication and Agrobacterium. S. Afr. J. Bot. 111, 307-312.

Kozai, T., 2010. Photoautotrophic micropropagation - Environmental control for promoting photosynthesis. Propag. Ornam. Plants 10, 188-204.

Kozai, T., Kubota, C., Jeong, B.R., 1997. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tiss. Organ Cult. 51, 49-56.

Krikorian, A.D., 1995. Hormones in Tissue Culture and Micropropagation, In: Davies, P.J. (Ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology. Springer, Dordrecht, pp. 774-796.

Kubota, C., Kakizaki, N., Kozai, T., Kasahara, K., Nemoto, J., 2001. Growth and net photosynthetic rate of tomato plantlets during photoautotrophic and photomixotrophic micropropagation. HortScience 36, 49-52.

Lai, C.-C., Lin, H.-M., Nalawade, S.M., Fang, W., Tsay, H.-S., 2005. Hyperhydricity in shoot cultures of Scrophularia yoshimurae can be effectively reduced by ventilation of culture vessels. J. Plant. Physiol. 162, 355-361.

Liu, Y., Yang, H., Sakanishi, A., 2006. Ultrasound: Mechanical gene transfer into plant cells by sonoporation. Biotech. Adv. 24, 1-16.

Menda, N., Strickler, S.R., Mueller, L.A., 2013. Advances in tomato research in the post-genome era. Plant Biotechnol. 30, 243-256.

Mercado, J.A., Sancho-Carrascosa, M.A., Jiménez-Bermúdez, S., Perán-Quesada, R., Pliego-Alfaro, F., Quesada, M.A., 2000. Assessment of in vitro growth of apical stem sections and adventitious organogenesis to evaluate salinity tolerance in cultivated tomato. Plant Cell Tiss. Organ Cult. 62, 101-106.

Meurer, C.A., Dinkins, R.D., Collins, G.B., 1988. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18, 180-186.

Meurer, C.A., Dinkins, R.D., Collins, G.B., 1998. Factors affecting soybean cotyledonary nodetransformation. Plant Cell Rep. 18, 180-186.

Mills, D., Yanqing, Z., Benzioni, A., 2004. Improvement of jojoba shoot multiplication in vitro by ventilation. In Vitro Cell. Dev. Biol. Plant 40, 396-402.

Mohamed, M.A., Alsadon, A., 2010. Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci. Hort. 123, 295-300.

Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.

Nitsch, J.P., 1969. Experimental androgenesis in Nicotiana. Phytomorphology 19, 389-404.

Otoni, W.C., Picoli, E.A.T., Costa, M.G.C., Nogueira, F.T.S., Zerbini, F.M., 2003. Transgenic tomato, In: Singh, R.P., Jaiwal, P.J. (Eds.), Plant Genetic Engineering: Improvement of Vegetables, v.5. Sci Tech Publishing LLC, Houston, TX, USA, pp. 40-131.

Pandey, V., Niranjan, A., Atri, N., Chandrashekhar, K., Mishra, M.K., Trivedi, P.K., Misra, P., 2014. WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco. Planta 239, 1217-1231.

Prudent, M., Lecomte, A., Bouchet, J., Bertin, N., Causse, M., Génard, M., 2011. Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J. Exp. Bot. 62, 907-919.

Safari, M., Ghanati, F., Hajnorouzi, A., Rezaie, A., Abdolmaleki, P., Mokhtari-Dizaji, M., 2012. Maintenance of membrane integrity and increase of taxanes production in hazel (Corylus avellana L.) cells induced by low-intensity ultrasound. Biotechnol. Lett. 34, 1137-1141.

Saldanha, C.W., Otoni, C.G., Azevedo, J.L.F., Dias, L.L.C., Rêgo, M.M., Otoni, W.C., 2012. A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss. Organ Cult. 110, 413-422.

Saldanha, C.W., Otoni, C.G., Rocha, D.I., Cavatte, P.C., Detmann, K.S.C., Tanaka, F.A.O., Dias, L.L.C., DaMatta, F.M., Otoni, W.C., 2014. CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tiss. Organ Cult. 118, 87-99.

Santana-Buzzy, N., Canto-Flick, A., Iglesias-Andreu, L.G., Montalvo-Peniche, M.C., López-Puc, G., Barahona-Pérez, F., 2006. Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. Hort Sci 41, 405-409.

Santarém, E.R., Trick, H.N., Essing, J.S., Finer, J.J., 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep. 17, 752-759.

Setamam, N.M., Sidik, N.J., Rahman, Z.A., Zain, C.R.C.M., 2014. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants. BMC Res. Notes 7, 1-8.

Sienkiewicz-Porzucek, A., Sulpice, R., Osorio, S., Krahnert, I., Leisse, A., Urbanczyk-Wochniak, E., Hodges, M., Fernie, A.R., Nunes-Nesi, A., 2010. Mild reductions in mitochondrial NAD-Dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth Mol. Plant 3, 156-173.

Singh, R., Singh, S., Parihar, P., Mishra, R.K., Tripathi, D.K., Singh, V.P., Chauhan, D.K., Prasad, S.M., 2016. Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes. Front. Plant Sci. 7, 1-19.

Smith, R.H., 2013. Regeneration and Morphogenesis, In: R.H., S. (Ed.), Plant Tissue3 Culture: Techniques and Experiments. Elsevier Inc., New Jersey, pp. 81-92.

Tigist, M., Workneh, T.S., Woldetsadik, K., 2013. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 50, 477-486.

Trujillo-Moya, C., Gisbert, C., 2012. The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tiss. Organ Cult. 111, 41-48.

Turpaev, K.T., 2002. Reactive oxygen species and regulation of gene expression. Biochem. (Mosc.) 67, 281-292.

van der Dries, N., Gianni, S., Czerednik, A., Krens, F.A., Klerk, G.-J.M., 2013. Flooding of the apoplast is a key factor in the development of hyperhydricity. J. Exp. Bot. 64, 5221-5230.

van der Merwe, M., Osorio, S., Araújo, W., Balbo, I., Nunes-Nesi, A., Maximova, E., Carrari, F., Bunik, V.I., Persson, S., Fernie, A.R., 2010. Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production. Plant Physiol. 153, 611-621.

Wang, J.Y., Lai, L.D., Tong, S.-M., Li, Q.L., 2013. Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochem. Biophys. Res. Commun. 432, 262-267.

Weinhold, A., Kallenbach, M., Baldwin, I.T., 2013. Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol. 13, 1-18.

Xia, X.-J., Zhou, Y.-H., Shi, K., Zhou, J., Foyer, C.H., Yu, J.-Q., 2015. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 66, 2839-2856.

Xu, T., Li, T., Qi, M., 2010. Calcium effects on mediating polygalacturonan activity by mRNA expression and protein accumulation during tomato pedicel explant abscission. Plant Growth Regul. 60, 255-263.

Yadav, M.J., Gaur, A.K., Garg, G.K., 2003. Development of suitable protocol to overcome hyperhydricity in carnation during micropropagation. Plant Cell Tiss. Organ Cult. 72, 153-156.

Yasmeen, A., 2009. An improved protocol for the regeneration and transformation of tomato (cv Rio Grande). Acta Physiol. Plant. 31, 1271-1277.



  • There are currently no refbacks.