Efeitos de uma dieta hiperlipídica e consumo de bebidas ricas em polifenóis nos parâmetros bioquímicos, histologia renal e pressão arterial de ratas wistar não sedentárias. / Effects of hyperlipidic diet and consumption of drinks containing polyphenol on renal biochemical parameters, renal histology and blood pressure of non-sedentary wistar rats

Juliana Arruda de Souza Monnerat, Bruna Ferreira Mota, Letícia Monteiro da Fonseca Cardoso, Raíza da Silva Ferreira Fiochi, Nina da Matta Alvarez Pimenta, Isabelle Waleska Santos de Medeiros Silva, Renata Beatriz da Rocha Ramalho, Cristiane Correia Teixeira, Maurício Alves Chagas, Sergio Girão Barroso, Gabrielle de Souza Rocha

Abstract


Introdução: O consumo elevado de gordura saturada e sedentarismo estão diretamente relacionados com a obesidade, podendo afetar os rins e alterar a pressão arterial. Objetivo: Analisar os efeitos da dieta hiperlipídica e bebidas ricas em polifenóis nos marcadores bioquímicos e histológicos renais e pressão arterial. Metodologia: Ratas Wistar, 90 dias de idade, recebendo água e ração ad libitum, divididas em 5 grupos: a) Grupo Controle (GC); b) Grupo Hiperlipídico (GH); c) Grupo Suco de uva integral (GS) (15mL/dia); d) Grupo Vinho tinto (GV) (10mL/dia) e e) Grupo Resveratrol (GR) (15mL/dia). Animais executaram protocolo de treinamento físico, 5dias/semana. Após 60 dias, os animais foram anestesiados e o sangue foi coletado para análises bioquímicas renais. Os rins foram retirados, medidos, pesados e processados para confecção de lâmina histológica. A pressão arterial foi aferida mediante pletismografia da cauda. Resultados representados como média±DP, ANOVA one way e Tukey ou Kruskal-Wallis e Dunn’s, considerados significativos quando p<0,05.  Resultados: os valores de ureia diminuíram no GS, GV e GR comparando com GH (p<0,0001); valores de ácido úrico menores no GS comparando com GH (p=0,01). GH, GS, GV e GR apresentaram diminuição do volume da área medular (p<0,003); densidade volumétrica do GS maior em comparação com o GH (p=0,003). A pressão arterial média (PAM) e pressão arterial sistólica (PAS) aumentaram significativamente no GH (p<0,0001 para ambos). Conclusão: Observou-se que o consumo das bebidas junto ao exercício físico foi capaz de reduzir os níveis de ureia e ácido úrico, assim como aumentar a densidade volumétrica renal diante de uma dieta hiperlipídica.


Keywords


Dieta hiperlipídica, resveratrol, suco de uva, vinho tinto, rim, pressão arterial.

References


Best D, Bhattacharya S. Obesity and fertility. Horm Mol Biol Clin Investig. 2015 [2015 Oct];24(1):5-10. https://doi.org/10.1515/hmbci-2015-0023.

Tain YL, Lin YJ, Sheen JM, Yu HR, Tiao MM, Chen CC, et al. High Fat Diets Sex-Specifically Affect the Renal Transcriptome and Program Obesity, Kidney Injury, and Hypertension in the Offspring. Nutrients. 2017 [2017 Apr 3];9(4). https://doi.org/ 10.3390/nu9040357.

Codogno JS, Turi BC, Sarti FM, Fernandes RA, Monteiro HL. The burden of abdominal obesity with physical inactivity on health expenditure in Brazil. Motriz: rev. educ. fis. 2015 [Mar 2015];21(1):68-74.

Rege SD, Kumar S, Wilson DN, Tamura L, Geetha T, Mathews ST, et al. Resveratrol protects the brain of obese mice from oxidative damage. Oxid Med Cell Longev. 2013 [2013 Sep 15]. https://doi.org/10.1155/2013/419092.

Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–633.

Martins AR, Más S. Lipotoxicity and kidney. Port J Nephrol Hypert. 2015;29(4):306-315.

WHO. Global strategy on diet, physical activity and health. 2004. [2015 January,13];Available from: http://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf

Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. Biofactors. 2018 [2018 Jan];44(1):50-60. https://doi.org/10.1002/biof.1409.

Cho S, Namkoong K, Shin M, Park J, Yang E, Ihm J, et al. Cardiovascular Protective Effects and Clinical Applications of Resveratrol. J Med Food. 2017 [2017 Apr];20(4):323-334. https://doi.org/10.1089/jmf.2016.3856.

Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia. 2013; 56: 204-217, https://doi.org/10.1007/s00125-012-2747-2.

Shi YW, Wang CP, Liu L, Liu YL, Wang X, Hong Y, et al. Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. Mol Nutr Food Res. 2012;56: 1433-1444, https://doi.org/10.1002/mnfr.201100828.

Jeong SI, Shin JA, Cho S, Kim HW, Lee JY, Kang JL, et al. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.Neurobiol Aging. 2016 [2016 Aug];44:74-84. https://doi.org/10.1016/j.neurobiolaging.2016.04.007.

Romão Jr JE, Pinto SWL, Canziani ME, Praxedes JN, Santello JL, Moreira JCM. Censo SBN 2002: Informações epidemiológicas das unidades de diálise do Brasil. J Bras nefrol. 2003;25:188-199.

Barcellos FC,Santos IS, Umpierre D,Bohlke M, and Hallal PC. Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin Kidney J. 20015 [2015 Dec];8(6): 753–765. https://doi.org/10.1093/ckj/sfv099.

Bagetti Filho HJS. Avaliação estereológica em rins de ratos submetidos à isquemia-reperfusão por clampeamento arteriovenoso e arterial [tese]. Rio de Janeiro: Universidade do Estado do Rio de Janeiro; 2012.

Pimenta NMA, Fiochi RSF, Cardoso LMF, Mota BF, Silva IWSM, Monnerat JAS, et al. Red wine, grape juice or resveratrol consumption effects on lipid and glycemic profile and hepatic morphology of wistar rats submitted to high fat diet and physical training. Investigação. 2017;16(8):87-94. https://doi.org/ 10.26843/investigacao.v16i8.2393

Yang Y, Smith DL Jr, Keating KD, Allison DB, Nagy TR. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity (Silver Spring). 2014 [2014 Oct];22(10):2147-55. https://doi.org/10.1002/oby.20811.

He H, Holl K, DeBehnke S, Yeo CT, Hansen P, Gebre AK, et al. Tpcn2 knock-out mice have improved insulin sensitivity and are protected against high-fat dietinduced weight gain. Physiol Genomics. 2018 [2018 May 11]. https://doi.org/10.1152/physiolgenomics.00135.2017.

El Ayed M, Kadri S, Mabrouk M, Aouani E, Elkahoui S. Protective effect of grape seed and skin extract against high-fat diet-induced dyshomeostasis of energetic metabolism in rat lung. Lipids Health Dis. 2018 May 10;17(1):109. https://doi.org/10.1186/s12944-018-0754-0

Kumar R, Litoff EJ, Boswell WT, Baldwin WS. High fat diet induced obesity is mitigated in Cyp3a-null female mice. Chem Biol Interact. 2018 [2018 May 5];289:129-140. https://doi.org/10.1016/j.cbi.2018.05.001.

Zhou Y, Lin S, Zhang L, Li Y. Resveratrol prevents renal lipotoxicity in high-fat diet-treated mouse model through regulating PPAR-? pathway. Mol Cell Biochem. 2016 [2016 Jan];411(1-2):143-50. https://doi.org/10.1007/s11010-015-2576-y.

Soares, TCJ. Sirtuínas- Artigo de revisão bibliográfica [tese]. Instituto de Ciências Abel Salazar: Universidade do Porto, 2014.

Lee CT, Chang LC, Liu CW, Wu PF. Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats. Mol Nutr Food Res. 2017 [2017 Oct];61(10). https://doi.org/10.1002/mnfr.201601030.

Zykova SN, Storhaug HM, Toft I, Chadban SJ, Jenssen TG, White SL. Cross-sectional analysis of nutrition and serum uric acid in two Caucasian cohorts: the AusDiab Study and the Tromsø study. Nutr J. 2015 [2015 May 14];14:49. https://doi.org/ 10.1186/s12937-015-0032-1.

Kanbay M, Jensen T, Solak Y, Le M, Roncal-Jimenez C, Rivard C, Lanaspa MA, Nakagawa T, Johnson RJ. Uric acid in metabolic syndrome: from an innocent bystander to a central player. Eur J Intern Med 2016;29:3-8.

Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002 [2002 Jun];282(6):F991-7.

Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010 [2010 Jun];28(6):1234-42.

Afsar B, Sag AA, Yalcin CE, Kaya E, Siriopol D, Goldsmith D, et al. Brain-kidney cross-talk: Definition and emerging evidence. European Journal of Internal Medicine. 2016;7–12.

Muhammed Eyüp Altunkaynak, Elvan Özbek, Berrin Zuhal Altunkaynak, ?smail Can, Deniz Unal, Bunyami Unal. The effects of high?fat diet on the renal structure and morphometric parametric of kidneys in rats. Journal of Anatomy. [2008 May 28]. https://doi.org/10.1111/j.1469-7580.2008.00902.x

de Souza DB, de Oliveira LL, da Cruz MC, Abílio EJ, Costa WS, Pereira-Sampaio MA, Sampaio FJ. Laparoscopic partial nephrectomy under warm ischemia reduces the glomerular density in a pig model. J Endourol. 2012 [2012 Jun];26(6):706-10. https://doi.org/10.1089/end.2011.0412.

Toaldo IM, Cruz FA, da Silva EL, Bordignon-Luiz MT. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutr Res. 2016 [2016 Aug];36(8):808-17. https://doi.org/10.1016/j.nutres.2016.04.010

Jordi Ortuño, Maria-Isabel Covas, Magi Farre, Mitona Pujadas, Monstserrat Fito, Olhs Khymenets, Cristina Andres-Lacueva, Pere Roset, Jesús Joglar, Rosa M. Lamuela-Raventós, Rafael de la Torre. Matrix effects on the bioavailability of resveratrol in humans. Food Chemistry. 120 (2010) 1123-1130. doi:10.1016/j.foodchem.2009.11.032

Chen L1, Yang S, Zumbrun EE, Guan H, Nagarkatti PS, Nagarkatti M. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res. 2015 [2015 May];59(5):853-64. https://doi.org/ 10.1002/mnfr.201400819.

Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond). 2013 [2013 Feb];124(3):153-64. https://doi.org/ 10.1042/CS20120190.




DOI: https://doi.org/10.34117/bjdv6n1-105

Refbacks

  • There are currently no refbacks.