Thin walled stiffened plates: optimization using lamination parameters / Placas finas reforçadas: otimização usando parâmetros de laminação

Authors

  • Helio De Assis Pegado Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Laura Tameirao Sampaio Rodrigues

DOI:

https://doi.org/10.34117/bjdv5n12-359

Keywords:

Structural optimization, Composite material, Lamination parameters, Nastran sol 200

Abstract

The leading guide, when it begins the design of aeronautical structures, is to reduce its weight to the minimum necessary. The use of composite materials in aeronautical structures has provided a considerable reduction in weight while maintaining the same structural strength. However, due to the anisotropy of the material, its mathematical model is complex and involves large matrices. In this work, a carbon fiber reinforced plate is optimized that withstands buckling compression loads and has its weight reduced to the minimum required. The Nastran optimizer will be employed whose objective function involves minimizing the weight of the structure to withstand a predefined load without buckling, and the thickness of the plate and stiffener are the design variables. Initially, the optimizer is used on an aluminum and carbon fiber plate, and its results are compared to validate the use of the optimizer. Then the optimizer is employed to obtain the optimum lamination parameters, thickness, and dimensions of the plate and stiffener. It´s necessary to have a lamination data to get the optimum lay-up.

References

Bailie J; Ley, R.; Pasricha, A, 1997. “A summary and review of composite laminate design guidelines”. National Aeronautics and Space Administration, Final, n. 22.

Dutra, T.A. and Almeida, S.F.M., 2015. “Composite Plate Stiffness Multicriteria Optimization using Lamination Parameters.” Composite Structures, Elsevier, v.133, p. 166-177.

Fukunaga,H., Sekine,H., Satot, M. and Lino, A..,1995. “Buckling Design of Symmetrically Laminated Plates using Lamination Parameters.”Computer and Structures, Pergamon, v.57, n.4, p. 643-649.

Miki, M., 1993. “Optimum Design of Laminated Composite Plates using Lamination Parameters. AIAA Journal. AIAA, v. 31, n.5, p.921-922.

MIL-HDBK-17-3F, 2002. “Polymer Matrix Composites, Materials Usage, Design and Analyses”. Composite Materials Handbook, US Department of Defense, v.3.

Liu,B. and Haftka, R., 2004a. “Single-level composite wing optimization based on flexural lamination parameters”. Structural and Multidisciplinary Optimization, Springer, v. 26, n. 1-2, p.111-120.

Liu,B., Haftka, R. and Trompette, P., 2004b. “Maximization of buckling loads of composite panels using flexural lamination parameters”. Structural and Multidisciplinary Optimization, Springer, v. 26, n. 1-2, p.28–36.

Niu, M.C-Y, 1997. Airframe Stress Analysis and Sizing. Hong Kong Conmilit Press LTD. P. 617-648.

Quadros, H.B. and Hernandes, J.A., 2018. “A Lagrange Parametrization for the Design of Variable Stiffness Laminates”.Structural and Multidisciplinary Optimization, Springer, v. 58, n. 1, p.129-137.

Rice, R. C., 2003. “Metallic Materials Properties Development and Standardization” (MMPDS). National Technical Information Service, cap 1-4.

Rodrigues, L.T.S., 2018. Otimização Estrutural de um painel reforçado utilizando parâmetros de laminação. Trabalho de Conclusão de Curso, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil.

Downloads

Published

2019-12-27

How to Cite

Pegado, H. D. A., & Rodrigues, L. T. S. (2019). Thin walled stiffened plates: optimization using lamination parameters / Placas finas reforçadas: otimização usando parâmetros de laminação. Brazilian Journal of Development, 5(12), 33047–33064. https://doi.org/10.34117/bjdv5n12-359

Issue

Section

Original Papers