Thermostructural evaluation of poly(butylene adipate-co-terephthalate) /molybdenum trioxide nanocomposites through time domain nuclear magnetic resonance and other conventional techniques / Avaliação termo-estrutural de nanocompósitos de poli(adipato-co-tereftalato de butileno) / trióxido de molibdénio através de ressonância magnética nuclear no domínio do tempo e outras técnicas convencionais

Authors

  • Lizandra Viana Maurat da Rocha
  • Paulo Sérgio Rangel Cruz da Silva
  • Maria Inês Bruno Tavares

DOI:

https://doi.org/10.34117/bjdv8n5-257

Keywords:

PBAT, MoO3, Nanocomposite films, TD-NMR, structural properties.

Abstract

In present study, poly(butylene adipate-co-terephthalate) (PBAT) nanocomposites films were prepared by solvent casting technique, using chloroform (CHCl3) and containing different percentages (0-0.5 wt %) of molybdenum trioxide (MoO3) nanoparticles (NPs). The microstructure and molecular dynamics of the PBAT and PBAT/MoO3 films were characterized by X-ray diffraction (XRD) and time-domain nuclear magnetic resonance (TD-NMR). Films’ thermal degradation was studied by using thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy (FTIR) confirmed: no residual solvent or contaminants and polymer matrix integrity after the casting process. The results' matchup indicated that filler–polymer interaction was suitable and, thus, MoO3NPs are potential candidates to be used as filler in PBAT matrices, especially in concentrations around 0.3 %.

References

BALENDHRAN, S. et al. Two-Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials. 2013; https://doi.org/10.1002/adfm.201300125

BODAGHI, H. et al. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT - Food Science and Technology. 2013; http://dx.doi.org/10.1016/j.lwt.2012.07.027

BOŽINOVI, K. et al. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Elsevier. 2020; https://doi.org/10.1016/j.tox.2020.152564

BRITO, G. F. et al. Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes. Revista Eletrônica de Materiais e Processos. , v. 6, n. 2, p. 127–139, 2011. ISSN 1809‐8797

EMAMIFAR, A. et al. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies. 2010; http://dx.doi.org/10.1016/j.ifset.2010.06.003

FAZELIPOUR, S. et al. Effect of molybdenum trioxide nanoparticles on histological changes of uterus and biochemical parameters of blood serum in rat. 2020; https://doi.org/10.1007/s00580-020-03137-5

FRANCHETTI, S. M. M.; MARCONATO, J. C. Polímeros biodegradáveis - Uma solução parcial para diminuir a quantidade dos resíduos plásticos. Quimica Nova. 2006; https://doi.org/10.1590/S0100-40422006000400031

FUKUSHIMA, K.; RASYIDA, A.; YANG, M. C. Characterization, degradation and biocompatibility of PBAT based nanocomposites. Applied Clay Science. 2013; https://doi.org/10.1590/0370-44672018720077

HAIDER, T. P. et al. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition. 2019; https://doi.org/10.1002/anie.201805766

IWATA, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angewandte Chemie - International Edition. 2015; https://doi.org/10.1002/anie.201410770

JARAMILLO, A. F. et al. Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly(butylene adipate-co-terephthalate) Using Cu and Cu/Cu 2 O Nanoparticles and CuSO 4. Nanoscale Research Letters. 2019; https://doi.org/10.1186/s11671-019-2987-x

JIANG, G. et al. Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. Journal of Applied Polymer Science. 2020; https://doi.org/10.1002/app.48924

LAMBERT, S.; WAGNER, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chemical Society Reviews. 2017; https://doi.org/10.1039/c7cs00149e

LI, G. et al. An Investigation of the thermal degradation of the intumescent coating containing MoO3 and Fe2O3. Surface and Coatings Technology. 2008; http://dx.doi.org/10.1016%2Fj.surfcoat.2007.11.016

MARIMUTHU, M. et al. Methylene Blue-Fortified Molybdenum Trioxide Nanoparticles: Harnessing Radical Scavenging Property. ACS Publications. 2018; https://doi.org/10.1021/acsami.8b15841

MOUSTAFA, H. et al. PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Applied Materials and Interfaces. 2017; https://doi.org/10.1021/acsami.7b05557

PASCARIU, P. et al. New Electrospun ZnO:MoO3 Nanostructures: Preparation, Characterization and Photocatalytic Performance. Nanomaterials. 2020; https://doi.org/10.3390/nano10081476

REN, Y. et al. Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-Terephthalate) (PBAT), and Their Blends Under Digested Sludge Conditions. Journal of Polymers and the Environment. 2019; https://link.springer.com/article/10.1007/s10924-019-01563-3

RIZZARELLI, P. et al. Determination of polyethylene in biodegradable polymer blends and in compostable carrier bags by Py-GC/MS and TGA. Journal of Analytical and Applied Pyrolysis. 2016; https://doi.org/10.1016/j.jaap.2015.12.014

SEBENIK, R. F. et al. Molybdenum and Molybdenum Compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry. 2000; https://doi.org/10.1002/14356007.a16_655.pub2

SIYAMAK, S. et al. Effect of Fiber Esterification on Fundamental Properties of Oil Palm Empty Fruit Bunch Fiber/Poly(butylene adipate-co-terephthalate) Biocomposites. International Journal of Molecular Sciences. 2012; https://doi.org/10.3390/ijms13021327

TOUCHALEAUME, F. et al. Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere. 2016; https://doi.org/10.1016/j.chemosphere.2015.09.006

VASILE, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials. 2018; https://dx.doi.org/10.3390%2Fma11101834

VENKATESAN, R.; RAJESWARI, N. TiO2 nanoparticles/poly(butylene adipate-co-terephthalate) bionanocomposite films for packaging applications. Polymers for Advanced Technologies. 2017; https://doi.org/10.1002/pat.4042

WANG, B. et al. Interlayer Engineering of Molybdenum Trioxide toward High-Capacity and Stable Sodium Ion Half/Full Batteries. Advanced Functional Materials. 2020; https://doi.org/10.1002/adfm.202001708

WANG, H. et al. Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polymer Degradation and Stability. 2015; https://doi.org/10.1016/j.polymdegradstab.2015.03.007

XIANG, S. et al. Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing. 2020; https://doi.org/10.1016/j.polymertesting.2019.106211

YOUSSEF, A. M. Polymer Nanocomposites as a New Trend for Packaging Applications. 2013; https://doi.org/10.1080/03602559.2012.762673

ZEHETMEYER, G. et al. Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. Journal of Applied Polymer Science. 2016; https://doi.org/10.1002/APP.43212

ZOLLFRANK, C. et al. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces. Materials Science and Engineering. 2012; https://doi.org/10.1016/j.msec.2011.09.010

Published

2022-05-11

How to Cite

da Rocha, L. V. M., da Silva, P. S. R. C., & Tavares, M. I. B. (2022). Thermostructural evaluation of poly(butylene adipate-co-terephthalate) /molybdenum trioxide nanocomposites through time domain nuclear magnetic resonance and other conventional techniques / Avaliação termo-estrutural de nanocompósitos de poli(adipato-co-tereftalato de butileno) / trióxido de molibdénio através de ressonância magnética nuclear no domínio do tempo e outras técnicas convencionais. Brazilian Journal of Development, 8(5), 36588–36601. https://doi.org/10.34117/bjdv8n5-257

Issue

Section

Original Papers