Supercritical fluid extraction of murici leaves (Byrsonima crassifolia): Global yield, total phenolic compounds, antioxidant activity, and linear correlations / Extracção de fluido supercrítico de folhas de murici (Byrsonima crassifolia): Rendimento global, compostos fenólicos totais, actividade antioxidante, e correlações lineares

Marcos Martins Almeida, Flávia Cristina Seabra Pires, Ana Paula de Souza e Silva, Sérgio Henrique Brabo de Sousa, Marielba de los Angeles Rodriguez Salaza, Raul Nunes de Carvalho Junior

Abstract


The objective of this study was to obtain extracts from Byrsonima crassifolia leaves by supercritical CO2 (CO2-SFE) in order to determine the experimental data, global yield isotherms, total phenolic compounds, antioxidant activity, and linear correlations. Moisture, particle diameter, apparent and true density, bed porosity, and morphological characterization of murici leaves were analyzed. CO2-SFE was conducted at 313.15 K–323.15 K, and at 10 MPa to 30 MPa. The bed parameters agreed with those used in CO2-SFE, and the particles presented irregular flat shape. The isotherms showed an inflection point, and the highest global yield was obtained at 323.15 K and 30 MPa (1.24% d.b.). The highest values of phenolic compounds (68.85 mg GAE/g d.b.) and antioxidant activity (174.35 μM trolox/g d.b.) were obtained at 313.15 K and 30 MPa, in which a strong positive linear relationship was observed between these responses.


Keywords


Byrsonima crassifolia, Supercritical fluid extraction, Dynamic extraction period, Total phenolic compounds, Antioxidant activity, Linear correlations.

References


M. Maldini, P. Montoro, C. Pizza, Phenolic compounds from Byrsonima crassifolia L. bark: Phytochemical investigation and quantitative analysis by LC-ESI MS/MS, J. Pharm. Biomed. Anal. 56 (2011) 1–6. doi:10.1016/j.jpba.2011.03.032.

F. Guilhon-Simplicio, C.C.D.S. Pinheiro, G.G. Conrado, G.D.S. Barbosa, P.A. Dos Santos, M.D.M. Pereira, E.S. Lima, Anti-inflammatory, anti-hyperalgesic, antiplatelet and antiulcer activities of Byrsonima japurensis A. Juss. (Malpighiaceae), J. Ethnopharmacol. 140 (2012) 282–286. doi:10.1016/j.jep.2012.01.018.

M. Herrera-Ruiz, A. Zamilpa, M. González-Cortazar, R. Reyes-Chilpa, E. León, M.P. García, J. Tortoriello, M. Huerta-Reyes, Antidepressant effect and pharmacological evaluation of standardized extract of flavonoids from Byrsonima crassifolia, Phytomedicine. 18 (2011) 1255–1261. doi:10.1016/j.phymed.2011.06.018.

R.C. Santos, H. Kushima, C.M. Rodrigues, M. Sannomiya, L.R.M. Rocha, T.M. Bauab, J. Tamashiro, W. Vilegas, C.A. Hiruma-Lima, Byrsonima intermedia A. Juss.: Gastric and duodenal anti-ulcer, antimicrobial and antidiarrheal effects in experimental rodent models, J. Ethnopharmacol. 140 (2012) 203–212. doi:10.1016/j.jep.2011.12.008.

M.C.D.S. Verdam, F. Guilhon-Simplicio, K.C. De Andrade, K.L.M. Fernandes, T.M. Machado, F.M.A. Da Silva, M.P. De Souza, H.H.F. Koolen, C.D.S. Paula, B.C.K. Hirota, V.B. De Oliveira, C.M.S. Miyazaki, M. Kalegari, M.D. Miguel, P.M. Stuelp-Campelo, O.G. Miguel, Analgesic, Anti-Inflammatory, and Antioxidant Activities of Byrsonima duckeana W. R. Anderson (Malpighiaceae), Sci. World J. 2017 (2017) 1–8. doi:10.1155/2017/8367042.

R.O. de Souza, G. de Assis Dias Alves, A.L.S. Aguillera, H. Rogez, M.J.V. Fonseca, Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice, J. Photochem. Photobiol. B Biol. 178 (2018) 53–60. doi:10.1016/J.JPHOTOBIOL.2017.10.033.

J.N.S. Souza, E.M. Silva, A. Loir, J.-F. ßois Rees, H. Rogez, Y. Larondelle, Antioxidant capacity of four polyphenol-rich Amazonian plant extracts: A correlation study using chemical and biological in vitro assays, Food Chem. 106 (2008) 331–339. doi:10.1016/j.foodchem.2007.05.011.

R.O. de Souza, G. de A.D. Alves, A.L.S.A. Forte, F. Marquele-Oliveira, D.F. da Silva, H. Rogez, M.J.V. Fonseca, Byrsonima crassifolia extract and fraction prevent UVB-induced oxidative stress in keratinocytes culture and increase antioxidant activity on skin, Ind. Crops Prod. 108 (2017) 485–494. doi:10.1016/j.indcrop.2017.07.015.

S. Quispe-Condori, S. Deny, M.A. Foglio, P.T. V Rosa, C. Zetzl, G. Brunner, M.A.A. Meireles, Global yield isotherms and kinetic of artemisinin extraction from Artemisia annua L leaves using supercritical carbon dioxide, J. Supercrit. Fluids. 36 (2005) 40–48. doi:10.1016/j.supflu.2005.03.003.

A. Berna, A. Tárrega, M. Blasco, S. Subirats, Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed, J. Supercrit. Fluids. 18 (2000) 227–237.

A.T. Serra, I.J. Seabra, M.E.M. Braga, M.R. Bronze, H.C. de Sousa, C.M.M. Duarte, Processing cherries (Prunus avium) using supercritical fluid technology . Part 1: Recovery of extract fractions rich in bioactive compounds, J. Supercrit. Fluids. 55 (2010) 184–191. doi:10.1016/j.supflu.2010.06.005.

O. Wrona, K. Rafinska, C. Mozenski, B. Buszewski, Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials, J. AOAC Int. 100 (2017) 1624–1635. doi:10.5740/jaoacint.17-0232.

M.B. Jacobs, The Chemical Analysis of Food Products, 1938.

ASAE, ASAE Standards: Standards, Engineering Practices and Data., 45th ed., Miguigan, 1988.

R.R. Chao, S.J. Mulvaney, D.R. Sanson, F.-H. Hsieh, M.S. Tempesta, Supercritical CO2 Extraction of Annatto (Bixa orellana) Pigments and Some Characteristics of the Color Extracts, J. Food Sci. 56 (1991) 80–84. doi:10.1111 / j.1365-2621.1991.tb07980.x.

W. Span, R; Wagner, A new Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressure up to 800 MPa, J. Phys. Chem. Ref. Data. 25 (1996) 1509–1596. doi:10.1063/1.555991.

F.C.S. Pires, A.P. de S. e. Silva, M. de los A.R. Salazar, W.A. da Costa, H.S.C. da Costa, A.S. Lopes, H. Rogez, R.N. de Carvalho Junior, Determination of process parameters and bioactive properties of the murici pulp (Byrsonima crassifolia) extracts obtained by supercritical extraction, J. Supercrit. Fluids. 146 (2019) 128–135. doi:10.1016/j.supflu.2019.01.014.

V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol. 299 (1998) 152–178. doi:10.1016/S0076-6879(99)99017-1.

S. Georgé, P. Brat, P. Alter, M.J. Amiot, Rapid determination of polyphenols and vitamin C in plant-derived products, J. Agric. Food Chem. 53 (2005) 1370–1373. doi:10.1021/jf048396b.

C. Rice-Evans, N.J. Miller, Total antioxidant status in plasma and body fluids, Methods Enzymol. 234 (1994) 279–293. doi:10.1016/0076-6879(94)34095-1.

G. Leeke, F. Gaspar, R. Santos, Influence of Water on the Extraction of Essential Oils from a Model Herb Using Supercritical Carbon Dioxide, Ind. Eng. Chem. Res. 41 (2002) 2033–2039. doi:10.1021/ie010845z.

C.G. Pereira, M.A.A. Meireles, Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives, Food Bioprocess Technol. 3 (2010) 340–372. doi:10.1007/s11947-009-0263-2.

M. Goto, M. Sato, T. Hirose, Extraction of Peppermint Oil by Supercritical Carbon Dioxide, J. Chem. Eng. Japan - J CHEM ENG JPN. 26 (1993) 401–407. doi:10.1252/jcej.26.401.

E. Reverchon, Mathematical Modeling of Supercritical Extraction of Sage Oil, AIChE J. 42 (1996) 1765–1771. doi:10.1002/aic.690420627.

E. Reverchon, C. Marrone, Modeling and simulation of the supercritical CO2 extraction of vegetable oils, J. Supercrit. Fluids. 19 (2001) 161–175. doi:10.1016/S0896-8446(00)00093-0.

B. Daneshvand, K.M. Ara, F. Raofie, Comparison of supercritical fluid extraction and ultrasound-assisted extraction of fatty acids from quince (Cydonia oblonga Miller) seed using response surface methodology and central composite design, J. Chromatogr. A. 1252 (2012) 1–7. doi:10.1016/j.chroma.2012.06.063.

J.C.F. Johner, T. Hatami, G.L. Zabot, M.A.A. Meireles, Kinetic behavior and economic evaluation of supercritical fluid extraction of oil from pequi (Caryocar brasiliense) for various grinding times and solvent flow rates, J. Supercrit. Fluids. 140 (2018) 188–195. doi:10.1016/j.supflu.2018.06.016.

G. Caldera, Y. Figueroa, M. Vargas, D.T. Santos, G. Marquina-Chidsey, Optimization of supercritical fluid extraction of antioxidant compounds from venezuelan rosemary leaves, Int. J. Food Eng. 8 (2012) 1–14. doi:10.1515/1556-3758.1953.

T. Fernández-Ponce, L. Casas, C. Mantell, M. Rodríguez, E. Martínez De La Ossa, The Journal of Supercritical Fluids Extraction of antioxidant compounds from different varieties of Mangifera indica leaves using green technologies, J. Supercrit. Fluids. 72 (2012) 168–175. doi:10.1016/j.supflu.2012.07.016.

P.F. Leal, M.B. Kfouri, F.C. Alexandre, F.H.R. Fagundes, J.M. Prado, M.H. Toyama, M.A.A. Meireles, Brazilian Ginseng extraction via LPSE and SFE: Global yields, extraction kinetics, chemical composition and antioxidant activity, J. Supercrit. Fluids. 54 (2010) 38–45. doi:10.1016/j.supflu.2010.03.007.

K.S. Andrade, R.T. Gonalvez, M. Maraschin, R.M. Ribeiro-Do-Valle, J. Martínez, S.R.S. Ferreira, Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition, Talanta. 88 (2012) 544–552. doi:10.1016/j.talanta.2011.11.031.

R.N. Carvalho Jr., L.S. Moura, P.T. V Rosa, M.A.A. Meireles, Supercritical Fluid Extraction from Rosemary (Rosmarinus officinalis)- kinetic data, extracts global yield, composition, end antioxidant activity, J. Supercrit. Fluids. 35 (2005) 197–204. doi:10.1016/j.supflu.2005.01.009.

J.R.S. Botelho, A.G. Santos, M.E. Araújo, M.E.M. Braga, W. Gomes-Leal, R.N. Carvalho Junior, M.A.A. Meireles, M.S. Oliveira, Copaíba (Copaifera sp.) leaf extracts obtained by CO2 supercritical fluid extraction: Isotherms of global yield, kinetics data, antioxidant activity and neuroprotective effects, J. Supercrit. Fluids. 98 (2015) 167–171. doi:10.1016/j.supflu.2014.12.006.

K. Ameer, B.-S. Chun, J.-H. Kwon, Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling, Ind. Crops Prod. 109 (2017) 672–685. doi:10.1016/j.indcrop.2017.09.023.

J.C.W. Ouédraogo, C. Dicko, F.B. Kini, Y.L. Bonzi-Coulibaly, E.S. Dey, Enhanced extraction of flavonoids from Odontonema strictum leaves with antioxidant activity using supercritical carbon dioxide fluid combined with ethanol, J. Supercrit. Fluids. (2018). doi:10.1016/j.supflu.2017.08.017.

R. Goyeneche, A. Fanovich, C. Rodriguez Rodrigues, M.C. Nicolao, K. Di Scala, Supercritical CO2 extraction of bioactive compounds from radish leaves: Yield, antioxidant capacity and cytotoxicity, J. Supercrit. Fluids. 135 (2018) 78–83. doi:10.1016/j.supflu.2018.01.004.

G. Brunner, Supercritical fluids: Technology and application to food processing, J. Food Eng. 67 (2005) 21–33. doi:10.1016/j.jfoodeng.2004.05.060.

K.Y. Khaw, M.O. Parat, P.N. Shaw, J.R. Falconer, Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review, Molecules. 22 (2017) 1–22. doi:10.3390/molecules22071186.

M.A.R. Salazar, J.V. Costa, G.R.O. Urbina, V.M.B. Cunha, M.P. Silva, P. do N. Bezerra, W.B.S. Pinheiro, W. Gomes-Leal, A.S. Lopes, R.N. Carvalho Junior, Chemical composition, antioxidant activity, neuroprotective and anti-inflammatory effects of cipó-pucá (Cissus sicyoides L.) extracts obtained from supercritical extraction, J. Supercrit. Fluids. 138 (2018) 36–45. doi:10.1016/j.supflu.2018.03.022.

H.N.T. Pham, V. Tang Nguyen, Q. Van Vuong, M.C. Bowyer, C.J. Scarlett, Bioactive Compound Yield and Antioxidant Capacity of Helicteres hirsuta Lour. Stem as Affected by Various Solvents and Drying Methods, J. Food Process. Preserv. 41 (2017) 1–9. doi:10.1111/jfpp.12879.




DOI: https://doi.org/10.34117/bjdv7n12-054