Bioproducts from agro-industrial plant residues: opportunities for sustainable reuse / Bioprodutos de resíduos agroindustriais vegetais: oportunidades ao reaproveitamento sustentável

Marcelo Simões Tessmann, Cristiane Tessmann, Luciano da Silva Lima, Marcia Bastos Quintão, Marcus Luciano Souza de Ferreira Bandeira

Abstract


The expansion of agricultural production is increasingly accelerated, as a result of the greater need for food caused by population growth and, consequently, this growth results in the generation of greater amounts of waste. In general, the inspection of public environmental agencies and society demand from agribusinesses actions that increasingly seek the use of new environmental technologies for the destination of production residues, which can drastically reduce the impacts caused to the environment, in addition to add commercials values and increase the profitability of the projects. This study aimed to analyze the potential of the elaboration of bioproducts with agro-industrial residues for agricultural crops and that have the potential application for the Extreme South of Bahia region, Brazil, by conducting a descriptive survey of the generation that occurred in other regions. This systematic review was carried out by searching for scientific articles in the SciELO, Scopus and Web of Science databases, using the keywords "bioproduct" and "waste", in the years 2015 to 2021. The articles reported 93 agro-industrial residues derived from 48 agricultural products that generated more than 200 bioproducts, which demonstrates the potential of the theme for the creation of several bioproducts in the region, mainly with sugarcane residues. Considering the high production of sugarcane and the consequent generation of residues from this cultivation in the Extreme South of Bahia, this study indicates several opportunities for returning these discarded goods to a new productive cycle (Reverse Logistics), which can provide environmental, economic and environmental benefits. for the region.


Keywords


Environmental technology. Extreme South of Bahia. Reverse Logistic. Sugarcane.

References


Abaide ER, Mortari SR, Ugalde G, Valério A, Amorim SM, Di Luccio M et al. (2019) Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production. 209: 386-397. https://doi.org/10.1016/j.jclepro.2018.10.259

Adam MA, Sulaiman A, Baharuddin AS, Mokhtar MN, Subbian K, Tabatabaei M (2019) Characterization of delignified Oil Palm Decanter Cake (OPDC) for polymer composite development. International Journal on Advanced Science, Engineering and Information Technology. 9(2): 384-389. https://doi.org/10.18517/ijaseit.9.2.2392

Adekiya AO, Agbede TM (2017) Effect of methods and time of poultry manure application on soil and leaf nutrient concen- trations, growth and fruit yield of tomato (Lycopersicon escu- lentum Mill). J Saudi Soc Agric Sci 16: 383–388. https://doi.org/10.1016/j.jssas.2016.01.006

Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, Wang X (2020) Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.137315

Akond AUR, Lynam JG (2020) Deep eutectic solvent extracted lignin from waste biomass: Effects as a plasticizer in cement paste. Case Studies in Construction Materials. 13. https://doi.org/10.1016/j.cscm.2020.e00460

Alamsjah MA, Sulmartiwi L, Pursetyo KT, Amin MNG, Wardani KAK, Arifianto MD (2017) Modifying bioproduct technology of Medium Density Fibreboard from the seaweed waste Kappaphycusalvarezii and Gracilariaverrucosa. Journal of the Indian Academy of Wood Science. 14(1): 32-45. https://doi.org/10.1007/s13196-017-0185-y

Almeida DG, da Silva RCFS, Brasileiro PPF, Luna JM, Rufino RD, Sarubbo LA (2017) Commercial formulation of biosurfactant from yeast and its evaluation to use in the petroleum industry. Chemical Engineering Transactions. 57: 661-666. https://doi.org/10.3303/CET1757111

Almeida TM, Teixeira ACO (2010) Inter-relações entre fatores físicos e socioeconômicos na dinâmica de uso da terra no Extremo Sul da Bahia. Revista Geográfica Acadêmica. 4(2): 64-72.

Alrefai R, Alrefai AM, Benyounis KY, Stokes J (2020) An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes. Energies. 13(9). https://doi.org/10.3390/en13092399

ANP: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (2020) CSA - SIMP Web - Etanol - Consulta Produtores Etanol Autorizados. [access on Apr 30, 2020]. Available in: http://app.anp.gov.br/anp-cpl-web/public/etanol/consulta-produtores/consulta.xhtml

Barnabé S, Jacques J-P, Villemont C, Lemire P-O, Adjallé K, Bourdeau N, et al. Mangin, P (2019) How industries and cities are seizing the opportunity of the bioeconomy to enable prosperous and sustainable regions: cases from Quebec.Industrial Biotechnology. 5(3): 113-117. https://doi.org/10.1089/ind.2019.29169.sba

Bartkiene E, Bartkevics V, Krungleviciute V, Juodeikiene G, Zadeike D, Baliukoniene V, et al. (2017) Application of hydrolases and probiotic pediococcusacidilactici BaltBio01 strain for cereal by-products conversion to bioproduct for food/feed. International Journal of Food Sciences and Nutrition. 69(2): 165-175. https://doi.org/10.1080/09637486.2017.1344828

Bernardino CAR, Mahler CF, Veloso MCC, Romeiro GA, Schroeder P (2018) Torta de Filtro, Resíduo da Indústria Sucroalcooleira - Uma Avaliação por Pirólise Lenta. Revista Virtual de Química. 10(3): 551-573. https://doi.org/10.21577/1984-6835.20180042

Bezerra PXO, de Farias Silva CE, Soletti JI, de Carvalho SHV (2020) Cellulosic ethanol from sugarcane straw: a discussion based on industrial experience in the northeast of Brazil. Bioenergy Research. https://doi.org/10.1007/s12155-020-10169-w

Brasil, Ministério da Agricultura, Pecuária e Abastecimento (2019) A cachaça no Brasil: dados de registro de cachaças e aguardentes / Secretaria de Defesa Agropecuária. Brasília: MAPA/AECE. 27 p.

Brasil. Decreto nº.10.375 de 26 de maio de 2020. (2020) Institui o Programa Nacional de Bioinsumos e o Conselho Estratégico do Programa Nacional de Bioinsumos. [Access on July 24, 2020]. Available in: http://www.in.gov.br/en/web/dou/-/decreto-n-10.375-de-26-de-maio-de-2020-258706480

Casoni AI, Gutierrez VS, Volpe MA (2019) Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. Journal of Environmental Chemical Engineering. 7: 01-07. https://doi.org/10.1016/j.jece.2019.102893

Cerqueira Neto S (2014) Do isolamento regional a globalização: contradições sobre o desenvolvimento do Extremo Sul da Bahia. Salvador (Brasil): EDUFBA, p.19-47.

Cervi WR, Lamparelli RAC, Gallo BC, de Oliveira Bordonal R, Seabra JEA., Junginger M, van der Hilst F (2021) Mapping the environmental and techno‐economic potential of biojet fuel production from biomass residues in Brazil. Biofuels, Bioproducts and Biorefining. 15(1): 282-304. https://doi.org/10.1002/bbb.2161

Ciriminna R, Scurria A, Danzì C, Timpanaro G, Di Stefano V, Avellone G, Pagliaro M (2018) Fragrant bioethanol: A valued bioproduct from orange juice and essential oil extraction. Sustainable Chemistry and Pharmacy. 9: 42-45. https://doi.org/10.1016/j.scp.2018.05.002

Coimbra JM, Reis CK, Schwan RF, Silva CF (2021) Effect of the strategy of molasses supplementation in vinasse to high SCP production and rose flavor compound. Waste and Biomass Valorization.12: 359-369. https://doi.org/10.1007/s12649-020-00961-2

Corchado-Lopo C, Martinez-Avila O, Marti E, Llimós J, Busquets AM, Kucera D, Obruca S, et al. (2021) Brewer’s spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains. New Biotechnology. 62(25): 60-67. https://doi.org/10.1016/j.nbt.2021.01.009

Coronado MA, Montero G, Montes DG, Valdez-Salas B, Ayala JR, Garcia C, et al. (2020) Physicochemical characterization and SEM-EDX analysis of brewer's spent grain from the craft brewery industry. Sustainability. 12(18): 7744. https://doi.org/10.3390/su12187744

Cortes L, Pénez-Won M, Lemus-Mondaca R, Giovagnoli-Vicuna C, Uribe E (2020) Quality properties and mathematical modeling of vinasse films obtained under different conditions. Journal of Food Processing and Preservation. 44(6). https://doi.org/10.1111/jfpp.14477

da Silva GF, Mathias SL, de Menezes AJ, Vicente JGP, Delforno TP, Varesche MBA, Duarte ICS (2020b) Orange bagasse pellets as a carbon source for biobutanol production. Current Microbiology. 77(12): 4053-4062. https://doi.org/10.1007/s00284-020-02245-3

da Silva IA, Bezerra KGO, Durval IJB, Farias CBB, da Silva Júnior CJG, Santos EMS, et al. (2020a) Evaluation of the emulsifying and antioxidant capacity of the biosurfactant produced by candida bombicola URM 3718. Chemical Engineering Transactions. 79: 67-72. https://doi.org/10.3303/CET2079012

David GF, Ríos-Ríos AM, de Fátima Â, Perez VH, Fernandes AS (2019) The use of p-sulfonic acid calix[4]arene as organocatalyst for pretreatment of sugarcane bagasse increased the production of levoglucosan.Industrial Crops and Products. 134: 382-387. https://doi.org/10.1016/j.indcrop.2019.02.034

Debernardi-Vázquez TJ, Aguilar-Rivera N, Núñez-Pastrana R (2018) Composting of byproducts from the orange (Citrus sinensis (L.) osbeck) and sugarcane (Saccharum spp. hybrids) agroindustries. Ingenieria e Investigacion. 40(3): 81-88. https://doi.org/10.15446/ing.investig.v40n3.82877

Delisi R, Ciriminna R, Arvati S, Meneguzzo F, Pagliaro M (2018) Olive biophenol integral extraction at a two-phase olive mill.Journal of Cleaner Production. 174: 1487-1491. https://doi.org/10.1016/j.jclepro.2017.10.278

Dias JMCS, Souza DT, Braga M, Onoyama MM, Miranda CHB, Barbosa PFD, Rocha FD (2012) Produção de briquetes e péletes a partir de resíduos agrícolas, agroindustriais e florestais. Brasília (Brasil), DF: Embrapa Agroenergia, 130p.

Díaz AB, Marzo C, Caro I, de Ory I, Blandino A (2017) Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. Bioresource Technology. 225: 225-233. https://doi.org/10.1016/j.biortech.2016.11.024

EPE: Empresa de Pesquisa Energética (2018) Análise da eficiência energética em segmentos industriais selecionados: segmento celulose e papel. [access on May 3, 2020]. Available in: http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-314/topico-407/PRODUTO%204_Vpublicacao.pdf

Faria PM (2019) Revisão Sistemática da Literatura: contributo para um novo paradigma investigativo. Santo Tirso (Portugal): Whithebooks. 124p.

Felipe LO, Dias SC (2017) Surfactantes sintéticos e biossurfactantes: vantagens e desvantagens. Química Nova da Escola. 39(03): 228-236. https://doi.org/10.21577/0104-8899.20160079

Fidalgo A, Ciriminna R, Carnaroglio D, Tamburino A, Cravotto G, Grillo G, et al. (2016) Eco-friendly extraction of pectin and essential oils from orange and lemon peels.ACS Sustainable Chemistry and Engineering. 4(4): 2243-2251. https://doi.org/10.1021/acssuschemeng.5b01716

Fini EH, Hosseinnezhad S, Oldham DJ, Chailleux E Gaudefroy V (2016) Source dependency of rheological and surface characteristics of bio-modified asphalts. Road Materials and Pavement Design. 18(2): 408-424. https://doi.org/10.1080/14680629.2016.1163281

Gama AR, Brito-Cunha CCQ, Campos ITN, de Souza GRL, Carneiro LC, Bataus LAM (2019) Streptomyces thermocerradoensis I3 secretes a novel bifunctional xylanase/endoglucanase under solid-state fermentation. Biotechnology Progress. 36(2): 1-8. https://doi.org/10.1002/btpr.2934

Ganen F, Mattedi S, Rodil E, Soto A (2020) Separation of Linalool from Limonene via Extractive Distillation with 1 butyl-3-methylimidazolium acetate as entrainer. Industrial and Engineering Chemistry Research. 59(43): 19449-19457. https://doi.org/10.1021/acs.iecr.0c03646

Gomes AFS, dos Santos BSL, Fransciscon EG, Baffi MA (2016) Substract and temperature effect on xylanase production by aspergillus fumigatus using low cost agricultural wastes. Bioscience Journal. 32(4): 915-921. https://doi.org/10.14393/BJ-v32n4a2016-32935

González-Chávez MCA, Ruíz Olivares A, Carrillo-González R, Ríos Leal E (2015) Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings. International Journal of Environmental Science and Technology. 12(7): 2263-2272. https://doi.org/10.1007/s13762-014-0622-z

Greses S, Tómas-Pejó E, González-Fernández C (2021) Short-chain fatty acids and hydrogen production in one single anaerobic fermentation stage using carbohydrate-rich food waste. Journal of Cleaner Production. 284: 124727. https://doi.org/10.1016/j.jclepro.2020.124727

Grewal J, Khare SK (2018) One-pot bioprocess for lactic acid production from lignocellulosic agrowastes by using ionic liquid stable Lactobacillus brevis. Bioresource Technology. 251: 268-273. https://doi.org/10.1016/j.biortech.2017.12.056

Gu H, Bergman R, Anderson N, Alanya-Rosenbaum S (2018) Life-cycle assessment of activated carbon from woody biomass. Wood and Fiber Science. 50(3): 229-243.

Heinz KGH, Zanoni PRS, Oliveira RR, Medina-Silva R, Simão TLL, Trindade FJ, et al. (2017) Recycled paper sludge microbial community as a potential source of cellulase and xylanase enzymes. Waste and Biomass Valorization. 8(6): 1907-1917. https://doi.org/10.1007 / s12649-016-9792-x

Hong BH, How BS, Lam HL (2016) Overview of sustainable biomass supply chain: from concept to modelling. Clean Technologies and Environmental Policy.18(7): 2173-2194. https://doi.org/10.1007/s10098-016-1155-6

Hossain SMZ, Taher S, Khan A, Sultana N, Irfan,MF, Haq B, Razzak SA (2020) Experimental study and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the extraction conditions of papaya seed waste oil. Arabian Journal for Science and Engineering. 45(9): 7371-7383. https://doi.org/10.1007/s13369-020-04551-1

Hwangbo M, Tran JL, Chu K-H (2019) Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. Science of the Total Environment. 647: 806-813. https://doi.org/10.1016/j.scitotenv.2018.08.066

IBGE: Instituto Brasileiro de Geografia e Estatística (2019) Sistema IBGE de Recuperação Automática – Sidra. [access on January 07, 2021]. Available in: https://sidra.ibge.gov.br/tabela/5457

IPEA: Instituto de Pesquisa Econômica Aplicada (2012) Comunicados do IPEA - Plano Nacional de Resíduos Sólidos: diagnóstico dos resíduos urbanos, agrosilvopastoris e a questão dos catadores.145: 01-15.

Joel EB, Mafulul SG, Adamu HE, Goje LJ, Tijani H, Igunnu A, Malomo SO (2020) Peroxidase from waste cabbage (Brassica oleracea capitata L.) exhibits the potential to biodegrade phenol and synthetic dyes from wastewater. Scientific African. 10. https://doi.org/10.1016/j.sciaf.2020.e00608

Jordan JH, Easson MW, Dien B, Thompson S, Condon BD (2019) Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose. 26(10): 5959-5979. https://doi.org/10.1007/s10570-019-02533-7

Jordan JH, Easson MW, Dien B, Thompson S, Condon BD (2021) Lignin-containing cellulose nanofibers with gradient lignin contentobtained from cotton gin motes and cotton gin trash. Cellulose. 28(2): 755-773. https://doi.org/10.1007/s10570-020-03549-0

Junpadit, P, Suksaroj TT, Boonsawang P (2017) Transformation of palm oil mill effluent to terpolymer polyhydroxyalkanoate and biodiesel using rummeliibacilluspycnus strain TS8. Waste Biomass Valor. 8: 1247-1256. https://doi.org/10.1007/s12649-016-9711-1

Kabir F, Gulfraz M, Raja GK, Inam-ul-Haq M, Batool I, Awais M, et al. (2019) Comparative study on the usability of lignocellulosic and algal biomass for production of alcoholic fuels. BioResources. 14(4): 8135-8154.

Kammoun M, Ayeb H, Bettaieb T, Richel A (2020) Chemical characterisation and technical assessment of agri-food residues, marine matrices, and wild grasses in the South Mediterranean area: A considerable inflow for biorefineries. Waste Management. 118: 247-257. https://doi.org/10.1016/j.wasman.2020.08.032

Karimi S, Soofiani NM, Mahboubi A, Taherzadeh MJ (2018) Use of Organic Wastes and Industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability. 10: 01-19. https://doi.org/10.3390/su10093296

Khounani Z, Hosseinzadeh-Bandafha H, Moustakas K, Talebi AF, Goli SAH, Rajaeifar MA (2021b) Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). Journal of Cleaner Production. 278. https://doi.org/10.1016/j.jclepro.2020.123916

Khounani Z, Hosseinzadeh-Bandafha H, Nazemi F, Shaeifi M, Karimi K, Tabatabaei M et al. (2021a) Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner. Journal of Environmental Management. 279. https://doi.org/10.1016/j.jenvman.2020.111822

Koopmans J. (2006) Além do eucalipto: o papel do Extremo Sul. Cadernos do CEAS: Revista Crítica de Humanidades. 222: 45-58. https://doi.org/10.25247/2447-861X.2006.n222.p45-58

Lavecchia R, Maffei G, Paccassoni F, Piga L, Zuorro A (2019) Artichoke waste as a source of phenolic antioxidants and bioenergy. Waste and Biomass Valorization. 10(10): 2975-2984. https://doi.org/10.1007/s12649-018-0305-y

Leite PR. (2017) Logística Reversa. São Paulo (Brasil): Saraiva. p. 25-48.

Leonel LV, Sene L, da Cunha MAA, Dalanhol KCF, de Almeida Felipe MG (2020) Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol. Bioprocess and Biosystems Engineering. 43(12): 2153-2163. https://doi.org/10.1007/s00449-020-02401-w

Li W, Amos K, Li M, Pu Y, DeBolt S, Ragauskas AJ, Shi J (2018) Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnology for Biofuels. 11(1). https://doi.org/10.1186/s13068-018-1305-7

Llimós J, Martínez-Avila O, Marti E, Corchado-Lopo C, Llenas L, Gea T, Ponsá S (2020) Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00918-4

López-Linares JC, Lucas S, Garcia-Cubero MT, Jiménez JJ, Coca M (2020) A biorefinery based on brewer`s spent grains: Arabinoxylans recovery by microwave assisted pretreatment integrated with butanol production. Industrial Crops and Products. 158. https://doi.org/10.1016/j.indcrop.2020.113044

Maciel STA, Reis JHC, da Silva GF, dos Santos Freitas L (2020) Bio-oil production from Moringa oleifera Lam. residue through fixed-bed pyrolysis. Brazilian Journal of Chemical Engineering. 38: 123-131. https://doi.org/10.1007/s43153-020-00081-3

Mandalika A, Runge TM (2017) Addition of corn stover arabinoxylan into hardwood during pulping for improved physical properties. Tappi Journal. 16(9): 495-504.

Mariano APB, Unpaprom Y, Ramaraj R (2020) Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. Food and Bioproducts Processing. 122: 31-40. https://doi.org/10.1016/j.fbp.2020.04.003

Marques GL, Aguiar-Oliveira E (2020) Yellow mombin and jackfruit seeds residues applied in the production of reducing sugars by a crude multi-enzymatic extract produced by Penicillium roqueforti ATCC 101110. Journal of the Science of Food and Agriculture. 100(8): 3428-3434. https://doi.org/10.1002/jsfa.10377

Martín MT, Sanz AB, Nozal L, Castro F, Alonso R, Aguirre JL, et al. (2017) Microwave-assisted pyrolysis of Mediterranean forest biomass waste: bioproduct characterization. Journal of Analytical and Applied Pyrolysis. 127: 278-285. https://doi.org/10.1016/j.jaap.2017.07.024

Martínez-Cartas ML, Olivares MI, Sánchez S (2019) Production of bioalcohols and antioxidant compounds by acid hydrolysis of lignocellulosic wastes and fermentation of hydrolysates with Hansenula polymorpha.Engineering in Life Sciences. 19(7): 522-536. https://doi.org/10.1002/elsc.201900011

Medeiros LL, Silva FLH, Lima FCS, Lima CSS, Muniz MB, Santos SFM (2016) Optimization of acid treatment of cashew peduncle for ethanol and xylitol production. Chemical Engineering Transactions. 49: 577-582. https://doi.org/10.3303/CET1649097

Medeiros LL, Silva FLH, Santos SFM, Madruga MS, Melo DJN, Conrado LS (2017) Bioconversion of hydrolyzed cashew peduncle bagasse for ethanol and xylitol production. Revista Brasileira de Engenharia Agrícola e Ambiental. 21(7): 488-492. https://doi.org/10.1590/1807-1929/agriambi.v21n7p488-492

Milian-Luprón L, Hernández-Rodriguez M, Falcón-Hernández J, Otero-Calvis A (2020) Obtaining bioproducts by slow pyrolysis of coffee and cocoa husks as suitable candidates for being used as soil amendment and source of energy. Revista Colombiana de Química. 49(2): 23-29. https://doi.org/10.15446/rev.colomb.quim.v49n2.83231

Mohammed JN, Wan Dagang WRZ (2019) Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. Water Science and Technology. 80(10): 1807-1822. https://doi.org/10.2166/wst.2020.025

Montibeller MJ, Monteiro PL, Tupuna-Yerovi DS, Rios ADO, Manfroi V (2018) Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. Journal of Food Processing and Preservation. 42(8): e13698. https://doi.org/10.1111/jfpp.13698

Morana A, Squillaci G, Paixão SM, Alves L, La Cara F, Moura P (2017) Development of an energy biorefinery model for chestnut (castanea sativa mill.) shells. Energies. 10(10): 1504. https://doi.org/10.3390/en10101504

Mupondwa E, Li X, Tabil L (2017) Large-scale commercial production of cellulosic ethanol from agricultural residues: a case study of wheat straw in the Canadian Prairies.Biofuels, Bioproducts and Biorefining. 11(6): 955-970. https://doi.org/10.1002/bbb.1800

Nataraj D, Sakkara S, HN M, Reddy N (2018) Properties and applications of citric acid crosslinked banana fibre-wheat gluten films. Industrial Crops and Products. 124: 265-272. https://doi.org/10.1016/j.indcrop.2018.07.076

Ndukwe NA, Sibiya JBM, Van Wyk JPH (2020) Saccharification of sawdust with aspergillus niger cellulase. The Journal of Solid Waste Technology and Management. 46(3): 321-327. https://doi.org/10.5276/JSWTM/2020.321

Ni’Matuzahroh, Sari SK, Trikurniadewi N, Ibrahim SNMM, Khiftiyah AM, Abidin AZ, Nurhariyati T, Fatimah (2020) Bioconversion of agricultural waste hydrolysate from lignocellulolytic mold into biosurfactant by Achromobacter sp. BP(1)5. Biocatalysis and Agricultural Biotechnology. 24: 01-08. https://doi.org/10.1016/j.bcab.2020.101534

Nicoletti J, Ning C, You F (2019) Incorporating agricultural waste-to-energy pathways into biomass product and process network through datadriven nonlinear adaptive robust optimization. Energy. 180: 556-571. https://doi.org/10.1016/j.energy.2019.05.096

Nitschke M, Pastore GM (2002) Biossurfactantes: propriedades e aplicações. Química Nova. 25(5): 772-776.

Nunes EZ, de Andrade AM, Dias Júnior AF (2019) Production of briquettes using coconut and eucalyptus wastes. Revista Brasileira de Engenharia Agrícola e Ambiental. 23(11): 883-888. https://doi.org/10.1590/1807-1929/agriambi.v23n11p883-888

Oleson KR, Schwartz DT (2016) Extractives in Douglas-fir forestry residue and considerations for biofuel production. Phytochemistry Reviews. 15: 985-1008. https://doi.org/10.1007/s11101-015-9444-y

Padi RK, Chimphango A (2020) Feasibility of commercial waste biorefineries for cassava starch industries: Techno-economic assessment. Bioresource Technology. 297: 122461. https://doi.org/10.1016/j.biortech.2019.122461

Padilla-Rascón C, Ruiz E, Romero I, Castro E, Oliva JM, Ballesteros I, Manzanares P (2020) Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Industrial Crops and Products. 148. https://doi.org/10.1016/j.indcrop.2020.112279

Pereira Jr. N, Couto MAPG, Santa Anna LMM (2008) Series on biotechnology: Biomass of lignocellulosic composition for fuel ethanol production within the context of biorefinery. Rio de Janeiro (Brasil): Amiga Digital UFRJ, v.2, p. 1-45.

Pollard ZA, Goldfarb JL (2021) Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality. Environmental Pollution. 270(1). https://doi.org/10.1016/j.envpol.2020.116073

Ponte MR, Gadelha AMT, Machado YL, Lopes AAS, Malveira JQ, Mazzetto (2019) Blends of sugarcane bagasse with the mango tree and cashew tree's pruning: properties characterization and investigation of their energy potentials. Revista Matéria. 24(2). https://doi.org/10.1590/s1517-707620190002.0687

Presentato A, Scurria A, Albanese L, Lino C, Sciortino M, Pagliaro M, et al. (2020) Superior antibacterial activity of integral lemon pectin extracted via hydrodynamic cavitation. ChemistryOpen. 9(5): 628-630. https://doi.org/10.1002/open.202000076

Rambo MKD, Nemet YKS, Júnior CCS, Pedroza MM, Rambo MCD (2020a) Comparative study of the products from the pyrolysis of raw and hydrolyzed baru wastes. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00585-0

Rambo MKD, Rambo MCD, Melo PM, de Oliveira NML, Nemet YKS, Scapin E, et al. (2020b) Sustainability of biorefinery processes based on baru biomass waste. Journal of the Brazilian Chemical Society. 31(2): 273-279. https://doi.org/10.21577/0103-5053.20190169

Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta. 144: 696-703. https://doi.org/10.1016/j.talanta.2015.06.045

Reis CLB, Silva LMAE, Rodrigues THS, Félix AKN, Santiago-Aguiar RSD, Canuto KM, Rocha MVP (2017) Pretreatment of cashew apple bagasse using protic ionic liquids: enhanced enzymatic hydrolysis.Bioresource Technology. 224: 694-701. https://doi.org/10.1016/j.biortech.2016.11.019

Rodrigues MS, Moreira FS, Cardoso VL, de Resende MM (2017) Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATCC 10145. Environmental Science and Pollution Research. 24(22): 18699-18709. https://doi.org/10.1007/s11356-017-9492-5

Roldán IUM, Mitsuhara AT, Munhoz Desajacomo JP, de Oliveira LE, Gelli VC, Monti R, et al. (2017) Chemical, structural, and ultrastructural analysis of waste from the carrageenan and sugar-bioethanol processes for future bioenergy generation. Biomass and Bioenergy. 107: 233-243. https://doi.org/10.1016/j.biombioe.2017.10.008

Rubio FTV, Haminiuk CWI, Matelli-Tosi M, da Silva MP, Makimori GYF, Favaro-Trindade CS (2020) Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Research International. 136: 109470. https://doi.org/10.1016/j.foodres.2020.109470

Rulli MM, Alvarez A, Fuentes MS, Colin VL (2019) Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces. 174: 459-466. https://doi.org/10.1016/j.colsurfb.2018.11.052

Samer M, Khalefa Z, Abdelall T, Moawya W, Farouk A, Abdelaziz S, et al. (2019) Bioplastics production from agricultural crop residues. Agricultural Engineering International: CIGR Journal. 21(3): 190-194.

Santos J, Ouadi M, Jahangiri H, Hornung A (2020) Thermochemical conversion of agricultural wastes applying different reforming temperatures. Fuel Processing Technology. 203. https://doi.org/10.1016/j.fuproc.2020.106402

Sathish A, Marlar T, Sims RC (2015) Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production. Bioresource Technology. 193: 15-24. https://doi.org/10.1016/j.biortech.2015.06.052

Scurria A, Albanese L, Pagliaro M, Zabini F, Giordano F, Meneguzzo F, Ciriminna R (2021) CytroCell: Valued Cellulose from Citrus Processing Waste. Molecules. 26(3): 596. https://doi.org/10.3390/molecules26030596

SEAGRI/BA: Secretaria da Agricultura, Pecuária, Irrigação, Pesca e Aquicultura da Bahia. (2017) Ranking nacional dos produtos agrícolas estado da Bahia. [access on Apr 30, 2020]. Available in: http://www.seagri.ba.gov.br/sites/default/files/Ranking%202016%202017.pdf

SEBRAE/BA: Serviço de Apoio às Micro e Pequenas Empresas da Bahia (2016) Estudo de Mercado para Cachaça da Bahia. 2016 [access on May 01, 2020]. Available in: https://www.sebrae.com.br/Sebrae/Portal%20Sebrae/UFs/BA/Anexos/Estudo%20de%20Mercado%20-%20Cacha%C3%A7a%20da%20Bahia%20-%20vers%C3%A3o%20para%20publica%C3%A7%C3%A3o.pdf

SEI: Superintendência de Estudos Econômicos e Sociais da Bahia. (2019) Indicadores Territoriais. [access on May 23, 2020]. Available in: https://www.sei.ba.gov.br/index.php?option=com_content&view=article&id=2289&Itemid=265

Sharma B, Brandt C, Devita M-A, Langholtz M, Webb E (2020) Assessment of the feedstock supply for siting single- and multiple-feedstock biorefineries in the USA and identification of prevalent feedstocks. Biofpr: Biofuels, Bioproducts & Biorefining. https://doi.org/10.1002/bbb.2091

Silva RVS, Gonçalves AD, Vinhal JO, Cassella RJ, Santos RC, Dal Sasso MA, et al. (2021) Bioproducts from the pyrolysis of castor seed cake: Basic dye adsorption capacity of biochar and antifungal activity of the aqueous phase. Journal of Environmental Chemical Engineering. 9(1): 104825. https://doi.org/10.1016/j.jece.2020.104825

Slaný O, Klempová T, Marcinčák S, Čertík M (2020) Production of high-value bioproducts enriched with γ-linolenic acid and β-carotene by filamentous fungi umbelopsisisabellina using solid-state fermentations. Annals of Microbiology. 70(5): 01-11. https://doi.org/10.1186/s13213-020-01545-0

Solle MA, Arroyo J, Burgess MH, Warnat S, Ryan CA (2019) Value-added composite bioproducts reinforced with regionally significant agricultural residues. Composites Part A: Applied Science and Manufacturing. 124. https://doi.org/10.1016/j.compositesa.2019.05.009

Solorzano-Chavez EG, Paz-Cedeno FR, Ezequiel de Oliveira L, Gelli VC, Monti R, Conceição de Oliveira S, Masarin F (2019) Evaluation of the kappaphycusalvarezii growth under different environmental conditions and efficiency of the enzymatic hydrolysis of the residue generated in the carrageenan processing. Biomass and Bioenergy. 127. https://doi.org/10.1016/j.biombioe.2019.105254

Srinivas K, de Carvalho Oliveira F, Teller PJ, Gonҫalves AR, Helms GL, Ahring BK (2016) Oxidative degradation of biorefinery lignin obtained after pretreatment of forest residues of Douglas Fir. Bioresource Technology. 221: 394-404. https://doi.org/10.1016/j.biortech.2016.09.040

Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Sustainable energy from waste organic matters via efficient microbial processes. Science of the Total Environment. 722. https://doi.org/10.1016/j.scitotenv.2020.137927

Sun D, Yang Q, Wang Y, Gao H, He M, Lin X., et al. (2020) Distinct mechanisms of enzymatic saccharification and bioethanol conversion enhancement by three surfactants under steam explosion and mild chemical pretreatments in bioenergy Miscanthus. Industrial Crops and Products. 153. https://doi.org/10.1016/j.indcrop.2020.112559

Taddia A, Brandaleze GN, Boggione MJ, Bortolato SA, Tubio G (2020) An integrated approach to the sustainable production of xylanolytic enzymes fromAspergillusnigerusing agro-industrial by-products. Preparative Biochemistry & Biotechnology. 50(10): 979-991. https://doi.org/10.1080/10826068.2020.1777425

Tareen AK, Punsuvon V, Parakulsuksatid P (2020) Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech. 10(4): 179. https://doi.org/10.1007/s13205-020-02169-6

Tavares CS, Martins A, Faleiro ML, Miguel MG, Duarte LC, Gameiro JA et al. (2020) Bioproducts from forest biomass: essential oils and hydrolates from wastes of cupressuslusitanica mill. and cistus ladanifer L. Industrial Crops and Products. 144. https://doi.org/10.1016/j.indcrop.2019.112034

Tedesco S, Stokes J (2017) Valorisation to biogas of macroalgal waste streams: A circular approach to bioproducts and bioenergy in Ireland. Chemical Papers. 71(4): 721-728. https://doi.org/10.1007/s11696-016-0005-7

Terrasan CRF, Carmona EC (2015) Solid-state fermentation of brewer’s spent grain for xylanolytic enzymes production by penicillium janczewskii and analyses of the fermented substrate. Bioscience Journal. 31(6): 1826-1836. https://doi.org/10.14393/BJ-v31n6a2015-30044

Thapa S, Johnson DB, Liu PP, Canam T (2015) Algal biomass as a binding agent for the densification of miscanthus. Waste Biomass Valor. 6: 91-95. https://doi.org/10.1007/s12649-014-9326-3

Ullah SF, Souza AA, Hamann PRV, Ticona ARP, Oliveira GM, Barbosa JAR.G. et al. (2019) Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste. International Journal of Biological Macromolecules. 148: 385-395. https://doi.org/10.1016/j.ijbiomac.2019.01.057

Urrutia RI, Yeguerman C, Jesser E, Gutierrez VS, Volpe MA, González JOW (2021) Sunflower seed hulls waste as a novel source of insecticidal product: Pyrolysis bio-oil bioactivity on insect pests of stored grains and products. Journal of Cleaner Production. 287. https://doi.org/10.1016/j.jclepro.2020.125000

Veses A, Sanahuja-Parejo O, Navarro MV, López JM, Murillo R, Callén MS, Garcia T (2020) From laboratory scale to pilot plant: Evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO. Catalysis Today. https://doi.org/10.1016/j.cattod.2020.04.054

Wang W, Chen X, Katahira R, Tucker M (2019) Characterization and deconstruction of oligosaccharides in black liquor from deacetylation process of corn stover. Frontiers in Energy Research. 7. https://doi.org/10.3389/fenrg.2019.00054

Xu C, Xia T, Wang J, Yu L, Wu L, Zhang Y, et al. (2018) Selectively Desirable Rapeseed and Corn Stalks Distinctive for Low-Cost Bioethanol Production and High-Active Biosorbents. Waste and Biomass Valorization. 12(2): 95-805. https://doi.org/10.1007/s12649-020-01026-0

Young T, Li Y, Efthimiou G (2019) Olive pomace oil can be used as an alternative carbon source for clavulanic acid production by streptomyces clavuligerus.Waste and Biomass Valorization. 11: 3965-3970. https://doi.org/10.1007/s12649-019-00719-5

Zhao J, Tian D, Shen F, Hu J, Zeng Y, Huang C (2019) Valorizing waste lignocellulose-based furniture boards by phosphoric acid and hydrogen peroxide (Php) pretreatment for bioethanol production and high-value lignin recovery. Sustainability (Switzerland). 11(21). https://doi.org/10.3390/su11216175




DOI: https://doi.org/10.34117/bjdv7n9-208

Refbacks

  • There are currently no refbacks.