Representativeness of the field of rural buildings and ambience in Brazilian journals / Representatividade do campo dos edifícios rurais e do ambiente nas revistas brasileiras

Leonardo de Brito Andrade, Carlos Augusto de Paiva Sampaio, Rodrigo Figueiredo Terezo, Sérgio Ricardo Rodrigues de Medeiros, Diego Peres Netto

Abstract


According to CAPES, Rural Buildings and Ambience is an area of concentration within the knowledge subarea of Agriculture Engineering which is part of the field of Agrarian Sciences. In the last 20 years, the Brazilian journals on Agrarian Sciences that publish articles related to Rural Buildings and Ambience have significantly increased the number of published documents, especially after the year 2006. Nevertheless, the number of articles in this area of concentration is not expressive when compared to the total of articles published in other areas of Agrarian Sciences. Considering the current scenario of the national agricultural production, especially for animal production, all parameters involving rural buildings, as well as climate and air quality analysis indoors, play a very relevant role in production efficiency, raising the importance of research in this area. Therefore, they would increase the number of published scientific articles. This work started with a systematic quantitative analysis of the last 21 years of scientific publications, considering 16 Brazilian journals and selecting 824 articles, revealing low representativeness of the area of concentration Rural Buildings and Ambience within the field of Agrarian Sciences, although important information was collected and tabulated for the growth of this sector in the national industry.


Keywords


Rural Buildings And Ambience; Quantitative Analysis; Primary Industry; Rural Development.

References


Sampaio, C. A. de P., Nääs, I. de A. & Nader, A. Gases e ruídos em edificações para suínos: aplicação das normas NR-15, CIGR e ACGIH. Eng. Agrícola 25, 10–18 (2005).

Ramos, M. C. & Barbosa, J. A. Basic unit cost simulation from free-stall design to dairy cattle confinement using different construction techniques. Eng. Agrícola 36, 972–983 (2016).

Mesa, D., Muniz, E., Souza, A. & Geffroy, B. Broiler-housing conditions affect the performance. Rev. Bras. Cienc. Avic. 19, 263–272 (2017).

Waker, R. & Nääs, I. Structural attributes dynamics of the brazilian broiler production chain. Rev. Bras. Cienc. Avic. 20, 517–526 (2018).

Ferrazza, R. de A., Lopes, M. A., de Oliveira Prado, D. G., de Lima, R. R. & Bruhn, F. R. P. Association between technical and economic performance indexes and dairy farm profitability. Rev. Bras. Zootec. 49, (2020).

Belkadi, A., Mezghani, D. & Mami, A. Design and implementation of FLC applied to a smart greenhouse. Eng. Agrícola 40, 777–790 (2020).

Silva, R. B. T. R., Nääs, I. de A. & de Moura, D. J. Broiler and swine production: Animal welfare legislation scenario. Sci. Agric. 66, 713–720 (2009).

Dias, C. P., Silva, C. A. da & Manteca, X. The brazilian pig industry can adopt european welfare standards: a critical analysis. Ciência Rural 45, 1079–1086 (2015).

Federici, J. F. et al. Assessment of broiler chicken welfare in Southern Brazil. Rev. Bras. Cienc. Avic. 18, 133–140 (2016).

Moura, D. J., Bueno, L. G. de F., Lima, K. A. O., Carvalho, T. M. R. & Maia, A. P. de A. Estratégias e instalações para melhorar o bem-estar animal. Rev. Bras. Zootec. 39, 311–316 (2010).

Vieira Neto, J. G. & Soriano, J. Distribution of stress in greenhouses frames estimated by aerodynamic coefficients of Brazilian and European standards. Sci. Agric. 73, 97–102 (2016).

Oliveira, M. E., Oliveira, R. L. Z., Souza, M. F. L. Z., Harada, E. S. & Tech, A. R. B. Desenvolvimento de sensores para monitoramento de ambiente aviário com ênfase em controle térmico. Rev. Bras. Eng. Biossistemas 12, 234 (2018).

Vasconcelos, O. C. de M. et al. Avaliação do microclima do Aprisco elevado de ovinos em sistema Semi-Confinado do Instituto Federal do Amapá – parte 1 / Evaluation of the microclimate of the raised Sheepfold in a Semi-Confined system at the Federal Institute of Amapá - part 1. Brazilian J. Dev. 7, 74912–74924 (2021).

Moraes, I. L. de A. et al. Avaliação da ambiência pré e pós-ordenha em vacas holandesas de alta produção / Evaluation of pre and post-milking ambience in high-production netherland cows. Brazilian J. Dev. 7, 55922–55933 (2021).

Oliveira, P. T. L., Amaro, A. L. N., Yanagi, T., Ferraz, G. A. S. & Yanagi, S. N. M. Bioclimatic zoning and trend analysis applied to broilers. Arq. Bras. Med. Vet. e Zootec. 71, 1631–1638 (2019).

Borges, P. H. M., de Mendoza, Z. M. S. H., Morais, P. H. M. & dos Santos, R. L. Artificial neural networks for predicting animal thermal comfort. Eng. Agric. 38, 844–856 (2018).

Souza, A. P. O. & Molento, C. F. M. Boas práticas agropecuárias na avicultura de corte do estado do Paraná: Foco no bem-estar animal. Cienc. Rural 45, 2239–2244 (2015).

Gabaron, D. de A. et al. Micro-organismos indicadores de contaminação de um abatedouro de frangos coloniais situado na região noroeste do estado do Paraná / Micro-organisms of contamination of a colonial chicken slaughterhouse situated in the northwest region of the state of Paraná. Brazilian J. Dev. 6, 60998–61007 (2020).

Dian, P. H. M. et al. Desempenho zootécnico e financeiro de bovinos confinados com acesso a diferentes áreas de sombreamento e a pleno sol / Zootecnical and financial development of confined bovines with access to different areas of shading and exposed to the sun. Brazilian J. Dev. 6, 101646–101664 (2020).

Weis, N. A., Machado, S. S. & Camargo, S. C. Desempenho zootécnico e condenação ao abate de frangos criados em aviários dark house e convencional / Zootechnical performance and slaughter condemnation of chickens raised in dark house and conventional houses. Brazilian J. Dev. 7, 69837–69849 (2021).

Baracho, M. S., Nääs, I. de A., Lima, N. D. S., Cordeiro, A. F. S. & Moura, D. J. Factors affecting broiler production: A meta-analysis. Rev. Bras. Cienc. Avic. 21, (2019).

Sousa, F. C. et al. Medidas para minimizar a emissão de amônia na produção de frangos de corte: Revisão. Rev. Bras. Eng. Biossistemas 10, 51 (2016).

Santos, M. P., Vale, M. M., Branco, T., Klein, D. R. & Santos, J. P. A. Heat stress in broilers and the need of climatization systems. Rev. Bras. Eng. Biossistemas 11, 265 (2017).

Nepomuceno, G. L. et al. Ambiente térmico em diferentes tipologias de creches para leitões. Rev. Bras. Eng. Biossistemas 12, 394 (2018).

Abreu, P. G. et al. Geostatistics applied to swine facilities equipped with evaporative cooling system. Rev. Bras. Eng. Agric. e Ambient. 20, 1014–1019 (2016).

Barbosa, R. C., Dalólio, F. S., Amorim, M. L., Silva, J. N. da & Gonzaga, D. A. Análise de viabilidade econômica de sistemas de aquecimento de instalações agropecuárias para criação de frangos de corte. Rev. Eng. NA Agric. - REVENG 25, 212–222 (2017).

Pereira, D. F., Kodaira, V., Bueno, L. G. D. F., Soares, N. M. & Salgado, D. D. alessandr. Technical feasibility of the acclimatization system in aviary of posture: A case study. Eng. Agric. 37, 855–866 (2017).

Silva, R. C. da, Cordeiro Júnior, J. J. F., Pandorfi, H., Vigoderis, R. B. & Guiselini, C. Simulation of ventilation systems in a protected environment using computational fluid dynamics. Eng. Agrícola 37, 414–425 (2017).

Samadpour, E., Zahmatkesh, I., Nemati, M. H. & Shahir, M. H. Determining the contribution of ventilation and insulation of broiler breeding houses in production performance using analytic hierarchy process (AHP). Rev. Bras. Cienc. Avic. 20, 211–217 (2018).

Sampaio, C. A. de P., Terezo, R. F., Rosa, T. O., Burigo, M. C. & Andrade, L. de B. Similitude and thermal performance on non-conventional roofs. Eng. Agrícola 38, 7–12 (2018).

Curi, T. M. R. C., de Moura, D. J., Massari, J. M., Mesquita, M. & Pereira, D. F. Computational fluid dynamics (CFD) application for ventilation studies in broiler houses. Eng. Agric. 37, 1–12 (2017).

Villagrán, E. & Bojacá, C. Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization. Rev. Ceres 67, 345–356 (2020).

Vilela, M. O. et al. Sistemas de ventilação na avicultura brasileira: Estado da arte. Rev. Bras. Eng. Biossistemas 14, 152 (2020).

Curi, T. M. R. C. et al. Positioning of sensors for control of ventilation systems in broiler houses: A case study. Sci. Agric. 74, 101–109 (2017).

Yu, L., Teng, G., Riskowski, G. L., Xu, X. & Guo, W. Uncertainty analysis of a web-based data acquisition system for poultry management with sensor networks. Eng. Agric. 38, 857–863 (2018).

Lopes, I., da Silva, M. V., de Melo, J. M. M., Montenegro, A. A. d. A. & Pandorfi, H. Geostatistics applied to the environmental mapping of aviaries. Rev. Bras. Eng. Agric. e Ambient. 24, 409–414 (2020).

Camusso, D., Santos, J. R. dos & Viagi, A. F. Monitoramento ambiental baseado na tecnologia Internet das Coisas para pequenos avicultores / Environmental monitoring based on Internet of Things technology for small poultry farmers. Brazilian J. Dev. 7, 51132–51146 (2021).

Tinôco, I. Avicultura Industrial: Novos Conceitos de Materiais, Concepções e Técnicas Construtivas Disponíveis para Galpões Avícolas Brasileiros. Rev. Bras. Ciência Avícola 3, 01–26 (2001).

Jahedi, A. & Zarei, A. Evaluation of Thermal Energy Consumption in Broiler Farms and Saving Strategies. Arq. Bras. Med. Vet. e Zootec. 72, 2355–2364 (2020).

Fidan, E. D., Kaya, M., Nazligul, A. & Türkyilmaz, M. K. The effects of perch cooling on behavior, welfare criteria, performance, and litter quality of broilers reared at high temperatures with different litter thicknesses. Rev. Bras. Cienc. Avic. 22, 1–12 (2020).

Nascimento, K. M. R. de S. et al. Glutamine supplementation plans for broilers reared in high-temperature environments. Rev. Bras. Zootec. 46, 218–222 (2017).

Santos, M. P., Vale, M. M., Santos, J. P. A. & Santos, J. C. Extraction of rules by classification from weather station data to help in the forecast of temperature and humidity index for dairy cattle. Rev. Bras. Eng. Biossistemas 8, 220 (2014).

Vale, M. M. do, Moura, D. J. de, Nääs, I. D. A., Curi, T. M. R. C. & Lima, K. A. O. Effect of a simulated heat wave in thermal and aerial environment broiler-rearing environment. Eng. Agrícola 36, 271–280 (2016).

Piedade, G. N. et al. Allometric coefficients of the cuts and organs of meat quail kept in different thermal environments. Arq. Bras. Med. Vet. e Zootec. 70, 579–587 (2018).

Cecchin, D. et al. Evaluation of different materials for covering beds in free-stall barn. Rev. Bras. Eng. Agric. e Ambient. 18, 109–115 (2014).

Teruel, B., Silveira, P., Marques, F. & Cappelli, N. Interface homem-máquina para controle de processos de resfriamento com ar forçado visando à economia de energia. Cienc. Rural 38, 705–710 (2008).

FAO. FAOSTAT: Statistics Division. Food and Agriculture Organization of the United Nations (FAO) http://www.fao.org/faostat/en/#home (2020).

Teodoro, S. M., Chaves, M. A., Escobedo, J. F. & Agostinho, C. A. Relação de variáveis ambientais em baias cobertas com polietileno e desempenho da rã-touro (Rana catesbeiana). Eng. Agrícola 25, 46–56 (2005).

Abreu, V. M. N., de Abreu, P. G., Coldebella, A., Jaenisch, F. R. F. & Silva, V. S. Evaluation of litter material and ventilation systems in poultry production: I. Overall performance. Rev. Bras. Zootec. 40, 1364–1371 (2011).

Tonoli, G. H. D., dos Santos, S. F., Rabi, J. A., dos Santos, W. N. & Savastano Junior, H. Desempenho térmico de telhas de fibrocimento reforçadas com polpa de sisal para construções rurais. Sci. Agric. 68, 1–7 (2011).




DOI: https://doi.org/10.34117/bjdv7n9-093

Refbacks

  • There are currently no refbacks.