A nanoemulsion of Rosmarinus officinalis L. essential oil with allelopathic effect against Lactuca sativa L. seeds / Uma nanoemulsão a partir do óleo essencial de Rosmarinus officinalis L com efeito alelopático em sementes de Lactuca sativa L

Luciana Barbosa Soares Chamoun, Josinei Rodrigues Filho, Viviana Borges Corte, Idalina Tereza De Almeida Leite Perin, Caio Pinho Fernandes, Rodrigo Alves Soares Cruz, Hildegardo Seibert França


Plant's essential oils have a wide range of allelopathic effects with potential uses as bioherbicides. In addition, the application of oils through nanoemulsions represents a promising alternative for agriculture, as it offers better performance and lowers toxic waste generation. Therefore, this study aimed to evaluate the chemical constitution of Rosmarinus officinalis (rosemary) essential oil, as well as its effects on germination, initial growth, Catalase (CAT), Peroxidase (POX), and Superoxide-Dismutase (SOD) enzymes activity of Lactuca sativa seeds. Nanoemulsions were produced at 5% concentration and then diluted with distilled water to 5.0, 7.0, and 10.0 mg/mL. We compared data obtained using variance (ANOVA) analysis, followed by Tukey's test at 5% probability. Rosemary oil showed a wide variety of terpenoid compounds, mainly the 1,8-cineol monoterpene, which accounted for 46% of the sample. The oil showed a dose-dependent negative allelopathic influence on all variables analyzed, causing a drop in germination percentage (%G), germination speed index (GVI), mean germination time (MTG), and leaf and root length. There was no change in CAT and SOD activity. The POX activity showed a reduction starting at the concentration of 7.0 mg/mL. The results showed allelopathic effects of rosemary oil, with potential use as a natural bioherbicide.


Antioxidant activity, Gas chromatography, Monoterpenes, Rosemary.

Full Text:



ACHARYA, A.; PAL, P. K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact, v. 19, p. 100232, 2020.

ADAMS, R. P. Identification of essential oil components by gas chromatography/mass spectroscopy. 4.1 ed. Allured Publishing Corp, 2017.

AHMAD, N. et al. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloids and Surfaces B: Biointerfaces, v. 115, p. 267–274, 2014.

ALIPOUR, M. et al. Phytotoxicity of encapsulated essential oil of rosemary on germination and morphophysiological features of amaranth and radish seedlings. Scientia Horticulturae, v. 243, p. 131–139, 2019.

ALMEIDA, L. et al. Bioatividade de óleos essenciais na germinação e no vigor em sementes de tomate. Biotemas, v. 32, n. 2, p. 13–21, 2019.

ANDERSON, M. D.; PRASAD, T. K.; STEWART, C. R. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings. Plant Physiology, v. 109, n. 4, p. 1247–1257, 1995.

ANDRADE, J. M. et al. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Science OA, v. 4, n. 4, p. FSO283, 2018.

ANJUM, N. A. et al. Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, v. 22, n. 6, p. 4099–4121, 2015.

ASSAEED, A. et al. Sesquiterpenes-rich essential oil from above ground parts of Pulicaria somalensis exhibited antioxidant activity and allelopathic effect onweeds. Agronomy, v. 10, n. 3, p. 399, 2020.

BARBOSA, J. A. et al. Allelopathy of aqueous Pachyrhizus erosus L. extracts on Euphorbia heterophylla and Bidens pilosa. Pesquisa Agropecuária Tropical, v. 48, n. 1, p. 59–65, 2018.

BARBOSA, K. B. F. et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição, v. 23, n. 4, p. 629–643, 2010.

BARBOSA, M. R. et al. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, v. 44, n. 3, p. 453–460, 2014.

BEAUCHAMP, C.; FRIDOVICH, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, v. 44, n. 1, p. 276–287, 1971.

BOIX, Y. F. et al. Volatile compounds from Rosmarinus officinalis L. and Baccharis dracunculifolia DC. Growing in southeast coast of Brazil. Química Nova, v. 33, n. 2, p. 255–257, 2010.

BORGES, R. S.; LIMA, E. S.; et al. Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology, v. 26, n. 1, p. 183–195, 2018.

BORGES, R. S.; KEITA, H.; et al. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology, v. 26, n. 4, p. 1057–1080, 2018.

BORGES, R. S. et al. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. Journal of Ethnopharmacology.v.229. p. 29-45, 2019.

CAMPOLO, O. et al. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Industrial Crops and Products, v. 157, p. 112935, 2020.

CHANCE, B.; MAEHLY, A. C. Assay of catalases and peroxidases. In: Methods in Enzymology. p. 764–775, 1955

CHAUDHARI, A. K. et al. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects. Environmental Science and Pollution Research, v. 28, n. 15, p. 18918–18940, 2021.

DONSÌ, F.; FERRARI, G. Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, v. 233, p. 106–120, 2016.

DUARTE, J. L. et al. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia, v. 25, n. 2, p. 189–192, 2015.

FRAZÃO, V. N.; SILVA, L. D. L. Efeito de extratos aquosos de plantas espontâneas do cerrado sobre a germinação de três gramíneas. Revista Ciência Agrícola, v. 18, n. 3, p. 14, 2020.

GAHUKAR, R. T.; DAS, R. K. Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnology for Environmental Engineering, v. 5, p 1-3, 2020.

GHADERI, L. et al. Effective Inhibition and eradication of Pseudomonas aeruginosa biofilms by Satureja khuzistanica essential oil nanoemulsion. Journal of Drug Delivery Science and Technology, v. 61, p. 102260, 2020.

GIANNOPOLITIS, C. N.; RIES, S. K. Superoxide Dismutases. Plant Physiology, v. 59, n. 2, p. 309–314, 1977.

GILL, S. S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v. 48, n. 12, p. 909–930, 2010.

HAVIR, E. A.; MCHALE, N. A. Biochemical and Developmental Characterization of Multiple Forms of Catalase in Tobacco Leaves. Plant Physiology, v. 84, n. 2, p. 450–455, 1987.

HILLEN, T. et al. Atividade antimicrobiana de óleos essenciais no controle de alguns fitopatógenos fúngicos in vitro e no tratamento de sementes. Revista Brasileira de Plantas Medicinais, v. 14, n. 3, p. 439–445, 2012.

IBÁÑEZ, M. D.; BLÁZQUEZ, M. A. Phytotoxic effects of commercial essential oils on selected vegetable crops: Cucumber and tomato. Sustainable Chemistry and Pharmacy, v. 15, p. 100209, 2020.

ISMAIL AMRI, HAMROUNI, L.; HANANA, M. B. J. Review on the phytotoxic effects of essential oils and their individual components: News approach for weed management. International Journal of Applied Biology and Pharmaceutical Technology, v. 4, n.1, 2013.

JEMAA, M. BEN; FALLEH, H.; KSOURI, R. Encapsulation of Natural Bioactive Compounds: Nanoemulsion Formulation to Enhance Essential Oils Activities. In: Microencapsulation - Processes, Technologies and Industrial Applications. IntechOpen, 2019.

JUCOSKI, G. DE O. Toxicidade de ferro e metabolismo antioxidativo em Eugenia uniflora L. Programa de Pós-Graduação em Fisiologia Vegetal. Universidade Federal de Viçosa, 2011.

KABOUCHE, Z. et al. Comparative antibacterial activity of five Lamiaceae essential oils from Algeria. International Journal of Aromatherapy, v. 15, n. 3, p. 129–133, 2005.

KAR, M.; MISHRA, D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiology, v. 57, n. 2, p. 315–319, 1976.

KARALIJA, E. et al. Phytotoxic potential of selected essential oils against Ailanthus altissima (Mill.) Swingle, an invasive tree. Sustainable Chemistry and Pharmacy, v. 15, p. 100219, 1 Mar. 2020.

LABOURIAU, L. G.; VILADARES, M. E. B. On the germination of seeds of [the fiber plant] Calotropis procera (Ait.) Ait.fAnais, 1976.

LIMA, L. A. et al. Nano-emulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum. Industrial Crops and Products, v. 162, p. 113282, 1 Apr. 2021.

MACHADO, D. G. et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chemistry, v. 136, n. 2, p. 999–1005, Jan. 2013.

MAGUIRE, J. D. Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence And Vigor 1. Crop Science, v. 2, n. 2, p. 176–177, Mar. 1962.

MAHDI, J. EL et al. Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy, v. 10, n. 6, p. 775, 29 May 2020.

MAIA, A. J. et al. Óleo essencial de alecrim no controle de doenças e na indução de resistência em videira. Pesquisa Agropecuária Brasileira, v. 49, n. 5, p. 330–339, May 2014.

MAIA, J. M. et al. Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes níveis de salinidade. Acta Botanica Brasilica, v. 26, n. 2, p. 342–349, Jun. 2012.

MAPA. Regras para análise de sementes. 1 Ed. ed. Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária, 2009.

MATIAS, R. et al. Cashew nut shell liquid and formulation: toxicity during the germination of lettuce, tomato seeds and coffee senna and seedling formation. Acta Scientiarum. Agronomy, v. 39, n. 4, p. 487, 11 Aug. 2017.

MIRANDA, C.A.S.F; et al. Chemical composition and allelopathic activity of Parthenium hysterophorus and Ambrosia polystachya weeds essential oils. American Journal of Plant Sciences, v. 05, n. 09, p. 1248–1257, 2014.

MIRANDA, C. A. S. F. et al. Chemical characterisation and allelopathic potential of essential oils from leaves and rhizomes of white ginger. REVISTA CIÊNCIA AGRONÔMICA, v. 46, n. 3, 2015.

MIRMOSTAFAEE, S.; AZIZI, M.; FUJII, Y. Study of allelopathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. Agronomy, v. 10, n. 2, p. 163, 2020.

MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, v. 7, n. 9, p. 405–410, Sep. 2002.

MOHAMMADIFAR, M. et al. Anti-osteoarthritis potential of peppermint and rosemary essential oils in a nanoemulsion form: behavioral, biochemical, and histopathological evidence. BMC Complementary Medicine and Therapies, v. 21, n. 1, p. 57, 2021.

MUNIZ, F. R. et al. Qualidade fisiológica de sementes de milho, feijão, soja e alface na presença de extrato de tiririca. Revista Brasileira de Sementes, v. 29, n. 2, p. 195–204, 2007.

NASCIMENTO, L. D. et al. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules, v. 10, n. 7, p. 988, 2020.

OLGA T. DEL LONGO, CLAUDIO A. GONZÁLEZ, GABRIELA M. PASTORI, V. S. T. Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant and Cell Physiology, v. 34, n. 7, p. 1023–1028, 1993.

ORTIZ-ZAMORA, L. et al. Preparation of non-toxic nano-emulsions based on a classical and promising Brazilian plant species through a low-energy concept. Industrial Crops and Products, v. 158, p. 112989, 2020.

OSTERTAG, F.; WEISS, J.; MCCLEMENTS, D. J. Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science, v. 388, n. 1, p. 95–102, 2012.

PÉREZ-DE-LUQUE, A. Nanotechnology in agricultureScientific ReportsNature Research, , 25 Dec. 2020. Disponível em: . Acesso em: 27 oct. 2020

RAHIMI, M.; BIDARNAMANI, F.; SHABANIPOOR, M. Effects of allelopathic three medicinal plants on germination and seeding growth of Portulaca oleracea. Biological Forum, v. 7, n. 1, p. 1520–1523, 2015.

REIS, L. R. DE A. R. T. DE J. D. R. R. A. Alelopatia em Plantas Forrageiras. 1. ed. 1992.

RIBEIRO, D. S. et al. Avaliação do óleo essencial de alecrim (Rosmarinus officinalis L.) como modulador da resistência bacteriana. Semina: Ciências Agrárias, v. 33, n. 2, p. 687–696, 2012.

ROSADO, L. D. S. et al. Alelopatia do extrato aquoso e do óleo essencial de folhas do manjericão ‘Maria Bonita’ na germinação de alface, tomate e melissa. Revista Brasileira de Plantas Medicinais, v. 11, n. 4, p. 422–428, 2009.

SALOMÃO, P. E. A.; FERRO, A. M. S.; RUAS, W. F. Herbicidas no Brasil: um breve revisão. Research, Society and Development, v. 9, n. 2, p. e32921990, 2020.

SANTOS RODRIGUES, A. P. et al. The effects of Rosmarinus officinalis L. essential oil and its nanoemulsion on dyslipidemic Wistar rats. Journal of Applied Biomedicine, v. 18, n. 4, p. 126–135, 2020.

SAWI, S. A. EL et al. Allelopathic potential of essential oils isolated from peels of three citrus species. Annals of Agricultural Sciences, v. 64, n. 1, p. 89–94, 2019.

SCHANDRY, N.; BECKER, C. Allelopathic Plants: Models for Studying Plant–Interkingdom Interactions. Trends in Plant Science. Vol. 25, n.2, 2020

SCOGNAMIGLIO, M. et al. Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews, v. 12, n. 4, p. 803–830, 2013.

SINGH, G. et al. Chemical constituents, antimicrobial investigations and antioxidative potential of volatile oil and acetone extract of star anise fruits. Journal of the Science of Food and Agriculture, v. 86, n. 1, p. 111–121, 2006.

SINGH, H. P. et al. α-Pinene inhibits growth and induces oxidative stress in roots. Annals of Botany, v. 98, n. 6, p. 1261–1269, 2006.

SOUZA FILHO, A. P. DA S. et al. Efeitos potencialmente alelopáticos dos óleos essenciais de Piper hispidinervium C. DC. e Pogostemon heyneanus Benth sobre plantas daninhas. Acta Amazonica, v. 39, n. 2, p. 389–395, 2009.

TAKAO, L. K.; IMATOMI, M.; GUALTIERI, S. C. J. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Brazilian Journal of Biology, v. 75, n. 4, p. 948–952, 2015.

USMAN, M. et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, v. 721, p. 1-16, 2020.

VERDEGUER, M.; SÁNCHEZ-MOREIRAS, A. M.; ARANITI, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, v. 9, n. 11, p. 1–48, 2020.

WEIR, T. L.; PARK, S.-W.; VIVANCO, J. M. Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, v. 7, n. 4, p. 472–479, 2004.

YUKUYAMA, M. N. et al. Nanoemulsion: process selection and application in cosmetics - a review. International Journal of Cosmetic Science, v. 38, n. 1, p. 13–24, 2016.

ZUCARELI, V. et al. Allelopathic potential of sorghum bicolor at different phenological stages. Planta Daninha, v. 37, 2019.

ZYGADLO, J. A.; ZUNINO, M. P. Effect of monoterpenes on lipid oxidation in maize. Planta, v. 219, n. 2, p. 303–309, 2004.

DOI: https://doi.org/10.34117/bjdv7n9-031


  • There are currently no refbacks.