Early type 2 diabetes and obesity does not affect eicosanoids level and renal morphology in a rat model/ Diabetes tipo 2 no estágio inicial e obesidade não afetam o nível de eicosanóides e a morfologia renal em um modelo de rato

Authors

  • Sandra Aparecida Benite Ribeiro Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Kamila Lauany Lucas Lima
  • Júlia Matzenbacher dos Santos
  • Didier Quevedo Cagnini
  • Igo Gomes Guimarães
  • Andréia Vitor Couto do Amaral
  • Denise Silva de Oliveira

DOI:

https://doi.org/10.34117/bjdv7n8-639

Keywords:

20- Hydroxyeicosatetraenoic acids, dihydroxyeicosatrienoic acids, epoxyeicosatrienoic acids, high-fat diet, insulin resistance.

Abstract

This study evaluated the effects of the early development of Diabetes Mellitus 2 (T2D) and diet-induced Obesity in the eicosanoid pathways and its effects on renal tissue. Thirty male Wistar rats were fed with a high-fat or standard diet and were divided into 3 groups: The Control group received a standard diet, the T2D group received a high-fat diet and a single dose of streptozotocin (25mg/Kg) and the Obesity group received high-fat diet. Caloric intake, feed efficiency, body weight gain, visceral fat, blood glucose, plasma levels of 14,15 EET/DHET, 20-HETE, and kidneys’ morphology were analyzed. Total caloric intake and feed efficiency were higher in the animals of the Obesity group than in Control.  Body weight gain, visceral fat, and blood glucose were higher in Obesity and T2D induced groups than in Control. Body weight gain, visceral fat, and feed efficiency associated positively with blood glucose. However, there was no difference in 14,15 EET/DHET, 20-HETE levels, or kidney injury between groups. In conclusion, we were unable to assess whether changes in eicosanoids are due to obesity or diabetes induction. So, this study suggests that longer periods of homeostatic disturbance caused by these protocols seem to be necessary to induce complications related to the disruption of the eicosanoid’s pathway and its effects on renal tissue.

 

References

Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A., Vikman P., Prasad RB., Aly DM., Almgren P., Wessman Y., Shaat N., Spégel P., Mulder H., Lindholm E., Melander O., Hansson O., Malmqvist U., Lernmark Å., Groop L. 2018. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. The Lancet Diabetes and Endocrinology, 6(5), 361–369.

American Diabetes Association. 2017. Classification and Diagnosis of Diabetes. Diabetes Care, 40(Supplement 1), S11–S24.

Andrich DE., Melbouci L., Ou Y., Leduc-Gaudet JP., Chabot F., Lalonde F., Lira FS., Gaylinn BD., Gouspillou G., Danialou G., Comtois AS., St-Pierre DH. 2018. Altered Feeding Behaviors and Adiposity Precede Observable Weight Gain in Young Rats Submitted to a Short-Term High-Fat Diet. Journal of Nutrition and Metabolism, 2018, 1–10.

Brøns, C., Grunnet LG. 2017. Mechanisms In Endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? European Journal of Endocrinology, 176(2), R67–R78.

Campbell WB., Gebremedhin D., Pratt PF., Harder DR. 1996. Identification of Epoxyeicosatrienoic Acids as Endothelium-Derived Hyperpolarizing Factors. Circulation Research, 78(3), 415–423.

De Taeye BM., Morisseau C., Coyle J., Covington JW., Luria A., Yang J., Murphy SB., Friedman DB., Hammock BB., Vaughan DE. 2010. Expression and regulation of soluble epoxide hydrolase in adipose tissue. Obesity (Silver Spring, Md.), 18(3), 489–498.

Dos Santos JM., Oliveira DS., Moreli ML., Benite-Ribeiro SA. 2018. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes. Molecular and Cellular Biochemistry, 449(1-2), 251–255.

Drosatos K. 2016. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy. Pathobiology of Aging & Age-Related Diseases, 6(1), 32221.

Eid S., Maalouf R., Jaffa AA., Nassif J., Hamdy A., Rashid A., Ziyadeh FN., Eid AA. 2013. 20-HETE and EETs in Diabetic Nephropathy: A Novel Mechanistic Pathway. PLoS ONE. 8(8):e70029.

Elmarakby AA., Faulkner J., Al-Shabrawey M., Wang MH., Maddipati KR., Imig JD. 2011. Deletion of soluble epoxide hydrolase gene improves renal endothelial function and reduces renal inflammation and injury in streptozotocin-induced type 1 diabetes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(5), R1307–R1317.

Ertunc ME., Hotamisligil GS. 2016. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. Journal of Lipid Research, 57(12), 2099–2114.

Evert AB., Boucher JL., Cypress M., Dunbar SA., Franz MJ., Mayer-Davis EJ., Neumiller JJ., Nwankwo R., Verdi CL., Urbanski P., Yancy WS. 2014. Nutrition Therapy Recommendations for the Management of Adults With Diabetes. Diabetes Care, 37(Supplement_1), S120–S143.

Fan F., Ge Y., Lv W., Elliott MR., Muroya Y., Hirata T., Booz GW., Roman RJ. 2016. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Frontiers in Bioscience (Landmark Edition), 21, 1427–1463.

Guglielmino K., Jackson K., Harris TR., Vu V., Dong H., Dutrow G., Evans JE., Graham J., Cummings BP., Havel PJ., Chiamvimonvat N., Despa S., Hammock BD., Despa F. 2012. Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats. American Journal of Physiology - Heart and Circulatory Physiology, 303(7), H853-62.

Guilherme A., Virbasius JV, Puri V., Czech MP. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9, 367–377.

He J., Wang C., Zhu Y., Ai D. 2016. Soluble epoxide hydrolase: A potential target for metabolic diseases. Journal of Diabetes, 8, 305–313.

Huang H., Morisseau C., Wang JF., Yang T., Falck JR., Hammock BD., Wang MH. 2007. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. American Journal of Physiology - Renal Physiology, 293, DOI: 10.1152/AJPRENAL.00004.2007

International Diabetes Federation (IDF). (2017). Diabetes Atlas, 8th. International Diabetes Federation (IDF). http://www.diabetesatlas.org.

Laniado-Schwartzman M., Abraham NG. 1992. The renal cytochrome P-450 arachidonic acid system. In Pediatric Nephrology, 6(5):490-8.

Lichtman SW., Pisarska K., Berman ER., Pestone M., Dowling H., Offenbacher E., Weisel H., Heshka S., Matthews DE., Heymsfield SB. 1992. Discrepancy between Self-Reported and Actual Caloric-Intake and Exercise in Obese Subjects. New England Journal of Medicine, 327(27), 1893–1898.

Luria A., Bettaieb A., Xi Y., Shieh GJ., Liu HC., Inoue H., Tsai HJ., Imig JD., Haj FG., Hammock BD. 2011. Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. Proceedings of the National Academy of Sciences, 108(22), 9038–9043.

Mansor LS., Gonzalez ER., Cole MA., Tyler DJ., Beeson JH., Clarke K., Carr CA., Heather LC. 2013. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovascular Diabetology, 12(1), 136.

Marques C., Meireles M., Norberto S., Leite J., Freitas J., Pestana D., Faria A., Calhau C. 2016. High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte, 5(1):11-21.

Martínez JA., Milagro FI., Claycombe KJ., Schalinske KL. 2014. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes. Advances in Nutrition, 5(1), 71–81.

Morales PE., Bucarey JL., Espinosa A. 2017. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. Journal of Diabetes Research, 2017, 1–10.

Roche C., Guerrot D., Harouki N., Duflot T., Besnier M., Rémy-Jouet I., Renet S., Dumesnil A., Lejeune A., Morisseau C., Richard V., Bellien J. 2015. Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice. Prostaglandins and Other Lipid Mediators, 120, 148-154.

Skovsø S. 2014. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. In Journal of Diabetes Investigation, 5(4):349-58.

Sodhi K., Puri N., Inoue K., Falck JR., Schwartzman ML., Abraham NG. 2012. EET agonist prevents adiposity and vascular dysfunction in rats fed a high fat diet via a decrease in Bach 1 and an increase in HO-1 levels. Prostaglandins and Other Lipid Mediators, 98(3-4),133-42.

Theken KN., Schuck RN., Edin ML., Tran B., Ellis K., Bass A., Lih FB., Tomer KB., Poloyac SM., Wu MC., Hinderliter AL., Zeldin DC., Stouffer GA., Lee CR. 2012. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. Atherosclerosis, 222(2), 530-6.

Tunaru S., Bonnavion R., Brandenburger I., Preussner J., Thomas D., Scholich K., Offermanns S. 2018. 20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nature Communications, 9(1), 177.

Wang MH., Smith A., Zhou Y., Chang HH., Lin S., Zhao X., Imig JD., Dorrance AM. 2003. Downregulation of renal CYP-derived eicosanoid synthesis in rats with diet-induced hypertension. Hypertension, 42(4 I), 594–599.

World Health Organization (WHO). 2016. Obesity and overweight: Fact sheet. WHO Media Centre. http://www.who.int/mediacentre/factsheets/fs311/en/

Yu Z., Xu F., Huse LM., Morisseau C., Draper AJ., Newman JW., Parker C., Graham LR., Engler MM., Hammock BD., Zeldin DC., Kroetz DL. 2000. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circulation Research, 87(11), 992-8.

Zha W., Edin ML., Vendrov KC., Schuck RN., Lih FB., Jat JL., Bradbury JA., DeGraff LM., Hua K., Tomer KB., Falck JR., Zeldin DC., Lee CR. 2014. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity. Journal of Lipid Research, 55(10), 2124–2136.

Zhou Y., Lin S., Chang HH., Du J., Dong Z., Dorrance AM., Brands MW., Wang MH. 2005. Gender differences of renal CYP-derived eicosanoid synthesis in rats fed a high-fat diet. American Journal of Hypertension, 18(4 Pt 1),530-7.

Downloads

Published

2021-08-29

How to Cite

Ribeiro, S. A. B., Lima, K. L. L., Santos, J. M. dos, Cagnini, D. Q., Guimarães, I. G., Amaral, A. V. C. do, & Oliveira, D. S. de. (2021). Early type 2 diabetes and obesity does not affect eicosanoids level and renal morphology in a rat model/ Diabetes tipo 2 no estágio inicial e obesidade não afetam o nível de eicosanóides e a morfologia renal em um modelo de rato. Brazilian Journal of Development, 7(8), 85230–85249. https://doi.org/10.34117/bjdv7n8-639

Issue

Section

Original Papers