An overview on microalgae carotenoids and chlorophylls: focus in the bioaccessibility / Uma visão geral dos carotenoides e clorofilas microalgais: foco na bioacessibilidade

Authors

  • Andrêssa S. Fernandes
  • Eduardo Jacob -Lopes
  • Leila Q. Zepka

DOI:

https://doi.org/10.34117/bjdv7n8-470

Keywords:

Microalgas, Biomassa, Biocompostos, Pigmentos Naturais, Carotenoides, Clorofilas, Bioacessibilidade, Biodisponibilidade.

Abstract

Atualmente, a tendência mundial por hábitos alimentares cada vez mais saudáveis impulsiona consideravelmente a busca por alternativas naturais capazes de modular positivamente a saúde humana. Consequentemente, esse comportamento tem destacado produtos e ingredientes à base de microalgas. As microalgas são um grupo diversificado de microrganismos considerados uma fonte atrativa de várias moléculas biologicamente ativas. Em evidência estão os carotenoides e clorofilas, visto que potenciais funções biológicas promotoras da saúde têm sido constantemente associadas a essas biomoléculas. No entanto, para que esses compostos exerçam tais atividades, eles precisam ser bioacessíveis e absorvidos pelo corpo humano. Diante disso, essa breve revisão visa elucidar os principais aspectos relacionados aos carotenoides e clorofilas das microalgas, bem como abordar a bioacessibilidade e biodisponibilidade desses compostos.

References

Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine drugs, 17(5), 304.

Becerra, M. O., Contreras, L. M., Lo, M. H., Díaz, J. M., & Herrera, G. C. (2020). Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods, 66, 103771.

Beltran, J. C. M., & Stange, C. (2016). Apocarotenoids: a new carotenoid-derived pathway, in: Stange C. (eds) Carotenoids in Nature (pp. 239-272), vol 79. Springer, Cham.

Bernaerts, T. M., Verstreken, H., Dejonghe, C., Gheysen, L., Foubert, I., Grauwet, T., & Van Loey, A. M. (2020). Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ?3-LC-PUFA. Journal of Functional Foods, 65, 103770.

Bohn, T. (2019). Carotenoids and markers of oxidative stress in human observational studies and intervention trials: Implications for chronic diseases. Antioxidants, 8(6), 179.

Borowitzka M. A. (2018) Biology of Microalgae, in: Levine, I. A., and Fleurence., J. (Eds.), Microalgae in Health and Disease Prevention (pp. 23-72). Academic Press.

Britton, G. (1995). Structure and properties of carotenoids in relation to function. The FASEB Journal, 9(15), 1551-1558.

Camacho, F., Macedo, A., & Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Marine drugs, 17(6), 312.

Carbonell?Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155-171.

Cha, K. H., Lee, J. Y., Song, D. G., Kim, S. M., Lee, D. U., Jeon, J. Y., & Pan, C. H. (2011). Effect of microfluidization on in vitro micellization and intestinal cell uptake of lutein from Chlorella vulgaris. Journal of agricultural and food chemistry, 59(16), 8670-8674.

Cha, K. H., Koo, S. Y., Song, D. G., & Pan, C. H. (2012). Effect of microfluidization on bioaccessibility of carotenoids from Chlorella ellipsoidea during simulated digestion. Journal of agricultural and food chemistry, 60(37), 9437-9442.

Chao, P., Huang, M. Y., Huang, W. D., LIN, K. H. R., Shiau-Ying, C., & Chi-Ming, Y. G. (2018). Study of chlorophyll-related compounds from dietary spinach in human blood. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 309-316.

Chen, K., Ríos, J. J., Pérez-Gálvez, A., & Roca, M. (2017). Comprehensive chlorophyll composition in the main edible seaweeds. Food chemistry, 228, 625-633.

Chen, K., & Roca, M. (2018a). In vitro digestion of chlorophyll pigments from edible seaweeds. Journal of Functional Foods, 40, 400-407.

Chen, K., & Roca, M. (2018b). In vitro bioavailability of chlorophyll pigments from edible seaweeds. Journal of Functional Foods, 41, 25-33.

Chen, K., & Roca, M. (2019). Cooking effects on bioaccessibility of chlorophyll pigments of the main edible seaweeds. Food chemistry, 295, 101-109.

Chen, M., Schliep, M., Willows, R. D., Cai, Z. L., Neilan, B. A., & Scheer, H. (2010). A red-shifted chlorophyll. Science, 329(5997), 1318-1319.

Chitchumroonchokchai, C., & Failla, M. L. (2017). Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements. Food Research International, 99, 936-943.

Chung, H. Y., Rasmussen, H. M., & Johnson, E. J. (2004). Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. The Journal of nutrition, 134(8), 1887-1893.

Desmarchelier, C., & Borel, P. (2017). Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends in Food Science & Technology, 69, 270-280.

Di Lena, G., Casini, I., Lucarini, M., & Lombardi-Boccia, G. (2019). Carotenoid profiling of five microalgae species from large-scale production. Food research international, 120, 810-818.

Dias, M. G., Olmedilla-Alonso, B., Hornero-Méndez, D., Mercadante, A. Z., Osorio, C., Vargas-Murga, L., & Mele?ndez-Marti?nez, A. J. (2018). Comprehensive database of carotenoid contents in ibero-american foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. Journal of agricultural and food chemistry, 66(20), 5055-5107.

Dima, C., Assadpour, E., Dima, S., & Jafari, S. M. (2020). Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2862-2884.

Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., ... & Sukhikh, S. (2020). Microalgae: A promising source of valuable bioproducts. Biomolecules, 10(8), 1153.

Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of biochemistry and biophysics, 652, 18-26.

El-Agamey, A., Lowe, G. M., McGarvey, D. J., Mortensen, A., Phillip, D. M., Truscott, T. G., and Young, A. J. (2004). Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Archives of Biochemistry and Biophysics, 430(1), 37-48.

Failla, M. L., Chitchumronchokchai, C., Ferruzzi, M. G., Goltz, S. R., & Campbell, W. W. (2014). Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and ?-tocopherol by Caco-2 cells. Food & function, 5(6), 1101-1112.

Fakhri, S., Abbaszadeh, F., Dargahi, L., & Jorjani, M. (2018). Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological research, 136, 1-20.

Fanzo, J., Covic, N., Dobermann, A., Henson, S., Herrero, M., Pingali, P., & Staal, S. (2020). A research vision for food systems in the 2020s: defying the status quo. Global food security, 26, 100397.

Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International, 99, 1036-1041.

Fernandes, A. S., Nass, P. P., Oliveira, Á., & Zepka, L. Q. (2020). Chlorophylls as Food Additives, in: Jacob-Lopes, E., Queiroz M., Zepka L. (eds), Pigments from Microalgae Handbook (pp. 391-420). Springer, Cham.

Fernandes, A. S., do Nascimento, T. C., Pinheiro, P. N., Jacob-Lopes, E., & Zepka, L. Q. (2021). Determination of profile of chlorophyll compounds in microalgae species. Brazilian Journal of Development, 7(1), 4381-4399.

Fernandes, T. M., Gomes, B. B., & Lanfer-Marquez, U. M. (2007). Apparent absorption of chlorophyll from spinach in an assay with dogs. Innovative Food Science & Emerging Technologies, 8(3), 426-432.

Fernández-García, E., Carvajal-Lérida, I., Jarén-Galán, M., Garrido-Fernández, J., Pérez-Gálvez, A., & Hornero-Méndez, D. (2012). Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International, 46(2), 438-450.

Ferruzzi, M. G., Failla, M. L., & Schwartz, S. J. (2001). Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model. Journal of Agricultural and Food Chemistry, 49(4), 2082-2089.

Ferruzzi, M. G., & Blakeslee, J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27(1), 1-12.

Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466-488.

Galasso, C., Gentile, A., Orefice, I., Ianora, A., Bruno, A., Noonan, D. M., ... & Brunet, C. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients, 11(6), 1226.

Gallardo-Guerrero, L., Gandul-Rojas, B., & Mínguez-Mosquera, M. I. (2008). Digestive stability, micellarization, and uptake by Caco-2 human intestinal cell of chlorophyll derivatives from different preparations of pea (Pisum sativum L.). Journal of agricultural and food chemistry, 56(18), 8379-8386.

Gandul-Rojas, B., Gallardo-Guerrero, L., & Mi?nguez-Mosquera, M. I. (2009). Influence of the chlorophyll pigment structure on its transfer from an oily food matrix to intestinal epithelium cells. Journal of agricultural and food chemistry, 57(12), 5306-5314.

Garrett, D. A., Failla, M. L., & Sarama, R. J. (1999). Development of an in vitro digestion method to assess carotenoid bioavailability from meals. Journal of agricultural and food chemistry, 47(10), 4301-4309.

Gille, A., Trautmann, A., Posten, C., & Briviba, K. (2016). Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. International journal of food sciences and nutrition, 67(5), 507-513.

Gille, A., Neumann, U., Louis, S., Bischoff, S. C., & Briviba, K. (2018). Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice. Journal of Functional Foods, 49, 285-294.

Gille, A., Hollenbach, R., Trautmann, A., Posten, C., & Briviba, K. (2019). Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum. Food Research International, 118, 40-48.

Granado-Lorencio, F., Herrero-Barbudo, C., Acién-Fernández, G., Molina-Grima, E., Fernández-Sevilla, J. M., Pérez-Sacristán, B., & Blanco-Navarro, I. (2009). In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chemistry, 114(2), 747-752.

Grune, T., Lietz, G., Palou, A., Ross, A. C., Stahl, W., Tang, G., ... & Biesalski, H. K. (2010). ?-Carotene is an important vitamin A source for humans. The Journal of nutrition, 140(12), 2268S-2285S.

Guiry, M. D., & Guiry, G. M. Algaebase. Word-wide electronic publication, National University of Ireland, Galway. (2021). http://www.algaebase.org. Accessed in July 02, 2021.

Guo, B., Oliviero, T., Fogliano, V., Ma, Y., Chen, F., & Capuano, E. (2019). Gastrointestinal bioaccessibility and colonic fermentation of fucoxanthin from the extract of the microalga Nitzschia laevis. Journal of agricultural and food chemistry, 68(7), 1844-1850.

Gupta, A. K., Seth, K., Maheshwari, K., Baroliya, P. K., Meena, M., Kumar, A., & Vinayak, V. (2021). Biosynthesis and extraction of high-value carotenoid from algae. Frontiers in Bioscience, 26(6), 171-190.

Hayes, M., Pottorff, M., Kay, C., Van Deynze, A., Osorio-Marin, J., Lila, M. A., ... & Ferruzzi, M. G. (2020). In vitro bioaccessibility of carotenoids and chlorophylls in a diverse collection of spinach accessions and commercial cultivars. Journal of agricultural and food chemistry, 68(11), 3495-3505.

Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: a review on the process engineering aspects. International journal of chemical engineering, 2010.

Hsu, C. Y., Chao, P. Y., Hu, S. P., & Yang, C. M. (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences, 4, 1-8.

Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology advances, 36(1), 54-67.

Jabri, H. A., Taleb, A., Touchard, R., Saadaoui, I., Goetz, V., & Pruvost, J. (2021). Cultivating Microalgae in Desert Conditions: Evaluation of the Effect of Light-Temperature Summer Conditions on the Growth and Metabolism of Nannochloropsis QU130. Applied Sciences, 11(9), 3799.

Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., & Zepka, L. Q. (2019). Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Current Opinion in Food Science, 1, 1-7.

Khalid, M., Bilal, M., Iqbal, H. M., & Huang, D. (2019). Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatalysis and Agricultural Biotechnology, 17, 399-407.

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 36.

Kopec, R. E., Gleize, B., Borel, P., Desmarchelier, C., & Caris-Veyrat, C. (2017). Are lutein, lycopene, and ?-carotene lost through the digestive process?. Food & function, 8(4), 1494-1503.

Kopec, R. E., & Failla, M. L. (2018). Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. Journal of Food Composition and Analysis, 68, 16-30.

Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41, 101566.

Lanfer-Marquez, U. M., Barros, R. M., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8), 885-891.

Lourenço, S. O. (2006). Cultivo de microalgas marinhas: princípios e aplicações (Vol. 1). São Carlos: RiMa.

Maroneze, M. M., Jacob-Lopes, E., Zepka, L. Q., Roca, M., & Pérez-Gálvez, A. (2019). Esterified carotenoids as new food components in cyanobacteria. Food chemistry, 287, 295-302.

Mercadante, A. Z. (2008). Food Colorants: Chemical and Functional Properties, in: Socaciu C. (Ed.), Carotenoids in Foods: Sources and Stability during Processing and Storage (pp. 213-240), New York: CRC Press.

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., ... & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food & function, 5(6), 1113-1124.

Mountourakis, F., Papazi, A., & Kotzabasis, K. (2021). The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation-New Perspectives against Global Warming. Symmetry, 13(6), 997.

Murador, D. C., Mesquita, L. M. D. S., Neves, B. V., Braga, A. R., Martins, P. L., Zepka, L. Q., & De Rosso, V. V. (2021). Bioaccessibility and cellular uptake by Caco-2 cells of carotenoids and chlorophylls from orange peels: A comparison between conventional and ionic liquid mediated extractions. Food Chemistry, 339, 127818.

Nascimento, T. C., Jacob-Lopes, E., de Rosso, V. V., & Zepka, L. Q. (2019). Introductory Chapter: A Global Perspective on Vitamin A, in: Zepka, L.Q., de Rosso V. V., and Jacob-Lopes, E. (Eds.), Vitamin A (pp. 1-4). IntechOpen.

Nascimento, T. C., Pinheiro, P. N., Fernandes, A. S., Murador, D. C., Neves, B. V., de Menezes, C. R., ... & Zepka, L. Q. (2021). Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. LWT, 140, 110780.

Nörnberg, M. L., Pinheiro, P. N., do Nascimento, T. C., Fernandes, A. S., Jacob-Lopes, E., & Zepka, L. Q. (2021). Carotenoids profile of Desertifilum spp. in mixotrophic conditions. Brazilian Journal of Development, 7(3), 33017-33029.

Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine drugs, 17(11), 640.

Nwoba, E. G., Ogbonna, C. N., Ishika, T., & Vadiveloo, A. (2020). Microalgal pigments: a source of natural food colors, in: Alan, A., Xu, J., and Wang, Z. (Eds.), Microalgae Biotechnology for Food, Health and High Value Products (pp. 81-123). Springer, Singapore.

O'Connell, O. F., Ryan, L., & O'Brien, N. M. (2007). Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutrition Research, 27(5), 258-264.

Pagels, F., Salvaterra, D., Amaro, H. M., & Guedes, A. C. (2020). Pigments from microalgae, in: Jacob-Lopes, E., Queiroz, M. I., Maroneze, M. M., and Zepka, L. Q. (Eds.), Handbook of Microalgae-Based Processes and Products (pp. 465-492). Academic Press.

Pang, N., Gu, X., Chen, S., Kirchhoff, H., Lei, H., & Roje, S. (2019). Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renewable and Sustainable Energy Reviews, 112, 450-460.

Pareek, S., Sagar, N. A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G. A., & Yahia, E. M. (2017). Chlorophylls: Chemistry and biological functions. Fruit and Vegetable Phytochemicals, 29, 269.

Patias, L. D., Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food research international, 100, 260-266.

Pérez-Gálvez, A., Viera, I., & Roca, M. (2017). Chemistry in the bioactivity of chlorophylls: An overview. Current medicinal chemistry, 24(40), 4515-4536.

Petry, F. C., & Mercadante, A. Z. (2017). Impact of in vitro digestion phases on the stability and bioaccessibility of carotenoids and their esters in mandarin pulps. Food & function, 8(11), 3951-3963.

Rammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., & Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and ?-carotene from D. salina. Food chemistry, 277, 128-134.

Rao, A. R., Baskaran, V., Sarada, R., & Ravishankar, G. A. (2013). In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass-A repeated dose study. Food research international, 54(1), 711-717.

Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., & Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agricultural and Food Chemistry, 54(23), 8749-8755.

Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews, 92, 394-404.

Roca, M.; Chen, K.; Pérez-Gálvez, A. Chlorophylls, In: Carle R., Schweiggert R. (Eds.), Handbook on natural pigments in food and beverages: industrial applications for improving food color. Woodhead Publishing: Cambridge, UK, 2016, pp. 125-158.

Rodrigues, D. B., Flores, É. M., Barin, J. S., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2014). Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Research International, 65, 144-148.

Rodrigues, D. B., Menezes, C. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2015). Bioactive pigments from microalgae Phormidium autumnale. Food Research International, 77, 273-279.

Rodrigues, D. B., Chitchumroonchokchai, C., Mariutti, L. R., Mercadante, A. Z., & Failla, M. L. (2017). Comparison of two static in vitro digestion methods for screening the bioaccessibility of carotenoids in fruits, vegetables, and animal products. Journal of agricultural and food chemistry, 65(51), 11220-11228.

Rodrigues, E., Mariutti, L. R., Chisté, R. C., & Mercadante, A. Z. (2012). Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity: Application to carotenoids and structure–activity relationship. Food chemistry, 135(3), 2103-2111.

Rodriguez-Amaya, D. B. (2015) Carotenes and xanthophylls as antioxidants, in: F. Shahidi (Ed). Handbook of Antioxidants for Food Preservation, (pp. 17-50). Elsevier Ltd.

Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20-26.

Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., ... & Zhu C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in lipid research, 70, 62-93.

Saha, S. K., Ermis, H., & Murray, P. (2020). Marine microalgae for potential lutein production. Applied Sciences, 10(18), 6457.

Sahni, P., Aggarwal, P., Sharma, S., & Singh, B. (2019). Nuances of microalgal technology in food and nutraceuticals: a review. Nutrition & Food Science, 0034-6659.

Saide, A., Lauritano, C., & Ianora, A. (2020). Pheophorbide a: State of the Art. Marine Drugs, 18(5), 257.

Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76, 735-750.

Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72.

Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722.

Silva, S. C., Ferreira, I. C., Dias, M. M., & Barreiro, M. F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25(15), 3406.

Simpson, B. K., Benjakul, S., & Klomklao, S. (2012). Natural food pigments. Food Biochemistry and Food Processing, 704-722.

Solymosi, K., & Mysliwa-Kurdziel, B. (2017). Chlorophylls and their derivatives used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13), 1194-1222.

Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941.

Sy, C., Gleize, B., Dangles, O., Landrier, J. F., Veyrat, C. C., & Borel, P. (2012). Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Molecular Nutrition & Food Research, 56(9), 1385-1397.

Takaichi, S. (2011). Carotenoids in algae: distributions, biosyntheses and functions. Marine drugs, 9(6), 1101-1118.

Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource technology, 304, 122997.

Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology advances, 41, 107536.

Tudor, C., Gherasim, E. C., Dulf, F. V., & Pintea, A. (2021). In vitro bioaccessibility of macular xanthophylls from commercial microalgal powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Science & Nutrition, 9(4), 1896-1906.

Tzachor, A., Richards, C. E., & Holt, L. (2021). Future foods for risk-resilient diets. Nature Food, 2(5), 326-329.

Varela, J. C., Pereira, H., Vila, M., & León, R. (2015). Production of carotenoids by microalgae: achievements and challenges. Photosynthesis research, 125(3), 423-436.

Viera, I., Chen, K., Ríos, J. J., Benito, I., Pérez?Gálvez, A., & Roca, M. (2018). First?Pass Metabolism of Chlorophylls in Mice. Molecular nutrition & food research, 62(17), 1800562.

Viera, I., Pérez-Gálvez, A., & Roca, M. (2018). Bioaccessibility of marine carotenoids. Marine drugs, 16(10), 397.

Viera, I., Pérez-Gálvez, A., & Roca, M. (2019). Green natural colorants. Molecules, 24(1), 154.

Vieira, M. V., Pastrana, L. M., & Fuciños, P. (2020). Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine drugs, 18(12), 644.

Xavier, A. A. O., & Mercadante, A. Z. (2019). The bioaccessibility of carotenoids impacts the design of functional foods. Current opinion in food science, 26, 1-8.

Xia, W., Tang, N., Varkaneh, H. K., Low, T. Y., Tan, S. C., Wu, X., & Zhu, Y. (2020). The effects of astaxanthin supplementation on obesity, blood pressure, CRP, glycemic biomarkers, and lipid profile: A meta-analysis of randomized controlled trials. Pharmacological research, 105113.

Yabuzaki, J. Carotenoids database. (2021). http://carotenoiddb.jp/ Accessed in June 18, 2021.

Yu, B., Wang, J., Suter, P. M., Russell, R. M., Grusak, M. A., Wang, Y., ... & Tang, G. (2012). Spirulina is an effective dietary source of zeaxanthin to humans. British journal of nutrition, 108(4), 611-619.

Zanoni, F., Vakarelova, M., & Zoccatelli, G. (2019). Development and characterization of astaxanthin-containing whey protein-based nanoparticles. Marine drugs, 17(11), 627.

Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 26, 94-100.

Zoccali, M., Giuffrida, D., Salafia, F., Socaciu, C., Skjånes, K., Dugo, P., & Mondello, L. (2019). First apocarotenoids profiling of four microalgae strains. Antioxidants, 8(7), 209

Published

2021-08-19

How to Cite

S. Fernandes, A., -Lopes, E. J., & Q. Zepka, L. (2021). An overview on microalgae carotenoids and chlorophylls: focus in the bioaccessibility / Uma visão geral dos carotenoides e clorofilas microalgais: foco na bioacessibilidade. Brazilian Journal of Development, 7(8), 82727–82760. https://doi.org/10.34117/bjdv7n8-470

Issue

Section

Original Papers