Baccharis dracunculifolia extract-loaded chitosan nanoparticles: development, physicochemical characterization and cytotoxicity evaluation/ Extrato de Baccharis dracunculifolia encapsulado em nanopartículas de quitosana: desenvolvimento, caracterização físico-química e avaliação da citotoxicidade

Thalita Dias de Oliveira, Lorena Rodrigues Riani, Mirsiane Pascoal Costa, Rodrigo Luiz Fabri, Jorge Willian Leandro Nascimento, Frederico Pittella Silva, Ademar Alves da Silva Filho, Guilherme Diniz Tavares

Abstract


Nesse estudo investigamos a adequabilidade da encapsulação do extrato em acetato de etila do ápice foliar de Baccharis dracunculifolia(BdAA) (Asteraceae), uma planta medicinal brasileira com promissoras aplicações farmacêuticas, em nanopartículas de quitosana (BdAA-Qui). As nanopartículas foram desenvolvidas pelo método de gelificação iônica e caracterizadas em relação ao diâmetro hidrodinâmico médio (DHm), índice de polidispersividade (IP), potencial zeta (PZ), eficiência de encapsulação (EE), com quantificação do Artepillin C, marcador químico do extrato, por CLAE-DAD, morfologia (por microscopia eletrônica de transmissão – MET) e citotoxicidade em linhagem celular de fibroblastos (L929). As BdAA-Qui apresentaram DHm superior às nanopartículas controle (sem o extrato). Esse pode ser considerado o primeiro indício da ocorrência da encapsulação dos constituintes do extrato na matriz polimérica das nanopartículas. Além disso, o IP obtido apresentou valor próximo a de sistemas monodispersos. Essa característica foi comprovada pelas imagens de MET. O valor de PZ positivo (20,4±0,85 mV) é característico da protonação da molécula de quitosana e pode implicar em estabilidade satisfatória das nanopartículas desenvolvidas. Ainda, esse valor foi semelhante àquele obtido para as nanopartículas controle, o que pode sugerir que os constituintes do extrato estejam no interior da nanopartícula e não adsorvidos em sua superfície. Em relação à EE, encontramos um valor elevado (cerca de 85%). Esse dado pode ser devido à interação eletrostática entre a quitosana e o Artepillin C (pka 4.65), o qual encontra-se prioritariamente sob a forma ionizada no pH padronizado para o preparo das nanopartículas (4.7). Por fim, a formulação desenvolvida não alterou a viabilidade das células durante o período de exposição (24 ou 48h). Esse dado preliminar é particularmente importante para garantir a segurança de uso do extrato encapsulado em nanopartículas de quitosana. Pelo exposto, o carreador escolhido mostrou-se adequado para encapsular o extrato BdAA visando futuras aplicações farmacêuticas.


Keywords


Baccharis dracunculifolia, ápice foliar, Artepillin C, nanopartículas de quitosana

Full Text:

PDF

References


Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016 Jan 28;10:483-507. doi: 10.2147/DDDT.S99651

Beserra FP, Gushiken LFS, Hussni MF, Ribeiro VP, Bonamin F, Jackson CJ, Pellizzon CH, Bastos JK. Artepillin C as an outstanding phenolic compound of Brazilian green propolis for disease treatment: A review on pharmacological aspects. Phytother Res. 2020 Sep 15. https://doi.org/10.1002/ptr.6875

Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997): Novelhydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63: 125–132.https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AIDAPP13>3.0.CO;24

Camuri,I J, Adriano Batista Costa, Amando Siuiti Ito, Wallance Moreira Pazin. Optical absorption and fluorescence spectroscopy studies of Artepillin C, the major component of green própolis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 198 (2018) 71–77. http://hdl.handle.net/11449/170738

Da Silva Filho, A. A. et al. Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D.C. (Asteraceae). Z Naturforsch Sect, v. 63C, p. 40-46, 2008. DOI: 10.1515/znc-2008-1-208

Da Silva Filho, A. A. et al. In Vitro Antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia DC (Asteraceae). Fitoterapia, v. 80, p. 478-482, 2009. doi: 10.1016/j.fitote.2009.06.007

Da Silva Filho, A. A. et al. In Vitro Trypanocidal activity evaluation of crude extract and isolated compounds from Baccharis dracunculifolia DC (Asteraceae). Journal of Pharmacy and Pharmacology, v. 56, p. 1.195-1.199, 2004. doi: 10.1211/0022357044067

Da Silva Filho, A. A. Fitoquímica da Baccharis dracunculifolia. In: SFORCIN et al. Baccharis dracunculifolia: uma das principais fontes vegetais da própolis brasileira. São Paulo, SP: Editora da UNESP, 2012. p. 38-43. http://hdl.handle.net/11449/113675

da Silva NP, Carmo Rapozo Lavinas Pereira ED, Duarte LM, de Oliveira Freitas JC, de Almeida CG, da Silva TP, Melo RCN, Morais Apolônio AC, de Oliveira MAL, de Mello Brandão H, Pittella F, Fabri RL, Tavares GD, de Faria Pinto P. Improved anti-Cutibacterium acnes activity of tea tree oil-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules. Colloids Surf B Biointerfaces. 2020 Dec;196:111371. https://doi.org/10.1016/j.colsurfb.2020.111371

Desai KG. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances. Crit Rev Ther Drug Carrier Syst. 2016;33(2):107-58. doi: 10.1615/CritRevTherDrugCarrierSyst.2016014850.

Franco, P. C. I. et al., Antimicrobial activity and characterization of cassava / chitosan starch films, reinforced with sugar cane fibers. Braz. J. of Develop., Curitiba, v. 6, n. 2,p.8766-8779 feb. 2020.

K. Miladi, S. Sfar, H. Fessi, A. Elaissari, Enhancement of alendronate encapsulation in chitosan nanoparticles, Journal of Drug Delivery Science and Technology, Volume 30, Part B, 2015, Pages 391-396

Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017 Nov 20;9(4):53. doi: 10.3390/pharmaceutics9040053.

Moritz M, Geszke-Moritz M. Recent Developments in the Application of Polymeric Nanoparticles as Drug Carriers. Adv Clin Exp Med. 2015 Sep-Oct;24(5):749-58. https://doi.org/10.1016/j.jddst.2015.04.007

Mudhakira, D, Caroline Wibisonoa, Heni Rachmawatia. Encapsulation of risperidone into chitosan-based nanocarrier via ionic binding interaction. Procedia Chemistry 13 (2014) 92 – 100. https://doi.org/10.1016/j.proche.2014.12.011

Munari CC, Alves JM, Bastos JK, Tavares DC. Evaluation of the genotoxic and antigenotoxic potential of Baccharis dracunculifolia extract on V79 cells by the comet assay. J Appl Toxicol. 2010 Jan;30(1):22-8. DOI: 10.1002/jat.1467

Nguyen MA, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez AC, Cottee ML, Afolayan E, Farah E, Kahiel Z, Côté M, Gadde S, Rayner KJ. Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo. ACS Nano. 2019 Jun 25;13(6):6491-6505. doi: 10.1021/acsnano.8b09679

Nobushi, Y, Naoki Oikawa, Yuzo Okazaki, Shigetoshi Tsutsumi, Yong Kun Park, Masahiko Kurokawa, Ken Yasukawa. Determination of Artepillin-C in Brazilian Propolis by HPLC with Photodiode Array Detector. Journal of Pharmacy and Nutrition Sciences, 2012, 2, 127-131. DOI: 10.6000/1927-5951.2012.02.02.2

Park YK, Paredes-Guzman JF, Aguiar CL, Alencar SM, Fujiwara FY. Chemical constituents in Baccharis dracunculifolia as the main botanical origin of southeastern brazilian propolis. J Agric Food Chem, 2004;52(5):1100-1103. https://doi.org/10.1021/jf021060m

Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8

Picchi, V., Serena Gobbi, Matteo Fattizzo, Mario Zefelippo, Franco Faoro. Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat. Plants 2021, 10, 691. https://doi.org/10.3390/plants10040691

Quiñones JP, Peniche H, Peniche C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers (Basel). 2018 Feb 26;10(3):235. doi: 10.3390/polym10030235.

Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci. 2019 Nov 16;20(22):5776. doi: 10.3390/ijms20225776

Rodrigues DM, De Souza MC, Arruda C, Pereira RAS, Bastos JK. The Role of Baccharis dracunculifolia and its Chemical Profile on Green Propolis Production by Apis mellifera. J Chem Ecol. 2020 Feb;46(2):150-162. https://doi.org/10.1007/s10886-019-01141-w

Rodrigues S, Dionísio M, López CR, Grenha A. Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater. 2012 Sep 17;3(3):615-41. doi: 10.3390/jfb3030615.

S. Cafaggi, E. Russo, R. Stefani, R. Leardi, G. Caviglioli, B. Parodi, G. Bignardi, D. De Totero, C. Aiello, M. Viale, Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex, Journal of Controlled Release,Volume 121, Issues 1–2, 2007, Pages 110-123. doi: 10.1016/j.jconrel.2007.05.037

Santos, D. A. et al. Antiinflammatory and antinociceptive effects of Baccharis dracunculifolia DC (Asteraceae) in different experimental models. Journal of Ethnopharmacology, v. 127, n. 2, p. 543-550, 2010. doi: 10.1016/j.jep.2009.09.061

Servat-Medina L, González-Gómez A, Reyes-Ortega F, Sousa IM, Queiroz Nde C, Zago PM, Jorge MP, Monteiro KM, de Carvalho JE, San Román J, Foglio MA. Chitosan-tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int J Nanomedicine. 2015 Jun 9;10:3897-909. doi: 10.2147/IJN.S83705

Shahinozzaman M, Basak B, Emran R, Rozario P, Obanda DN. Artepillin C: A comprehensive review of its chemistry, bioavailability, and pharmacological properties. Fitoterapia. 2020 Nov;147:104775. https://doi.org/10.1016/j.fitote.2020.104775

Tavares G D, Gonçalves J E, Monteiro L M, Löbenberg R, Storpirtis S, Bou-Chacra N A, Consiglieri, V O. N,N,N-trimethylchitosan-poly (n-butylcyanoacrylate) core-shell nanoparticles as a potential oral delivery system for acyclovir, Colloids and Surfaces B: Biointerfaces, Volume 196, 2020, 111336. https://doi.org/10.1016/j.colsurfb.2020.111336

Veiga RS, De Mendonça S, Mendes PB, Paulino N, Mimica MJ, Lagareiro Netto AA, Lira IS, López BG, Negrão V, Marcucci MC. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J Appl Microbiol. 2017 Apr;122(4):911-920. DOI: 10.1111/jam.13400

Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2(4):284-292. doi: 10.1007/s13346-012-0064-4

Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers (Basel). 2018 Apr 23;10(4):462. doi: 10.3390/polym10040462.




DOI: https://doi.org/10.34117/bjdv7n7-396

Refbacks

  • There are currently no refbacks.