Resistance Profile of P. aeruginosa isolates to β-lactams antimicrobials/ Perfil de resistência da P. aeruginosa isola para β-lactams antimicrobianos

Adailton Pereira dos Santos, Andressa Liberal Santos, Camila Zanatta de Oliveira, Célia Regina Malveste Ito, Giselle Pinheiro Lima Aires Gomes, Adenícia Custódia Silva e Souza, Lara Stefânia Netto de Oliveira Leão Vasconcelos, Mônica de Oliveira Santos, Lilian Carla Carneiro


β-lactamases are enzymes that hydrolyze the β-lactam ring, inactivating the action of β-lactam antibiotics. The objective of this work was to diagnose phenotypically and molecularly 14 β-lactamase resistance genes expressed in Pseudomonas aeruginosa and to correlate the results found. A total of 99 samples of Pseudomonas aeruginosa were selected and the antibiogram was performed. Real-time PCR is being performed using the Sybr Green system to amplify the genes corresponding to the resistances found in phenotyping. Of the 99 samples, 14 were identified as phenotypically resistant to the antimicrobial Aztreonam. The blaSME, blaOXA, blaGIM genes were simultaneously found in three (21.4%) samples. According to the statistical test, when evaluating the amplification results obtained for piperacillin + tazobactam, the molecular method was more sensitive for the detection of the gene coding for multidrug resistance, presenting values of (p <0.05). This information suggests gene researches are more sensitive and specific when compared with to the antibiogram test.


Antibiogram, Antimicrobial Resistance, β-lactams, Genes, Molecular Diagnosis.

Full Text:



Dogonchia AA; Ghaemia EZ; Ardebilia A; Yazdansetada S; Pournajaf A. 2018. Metallo β lactamase mediated resistance among clinical carbapenem resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Tzu Chi Medical Journal 30 (2): 90 96.

Paulsson M, Granrot A, Ahl J, Tham J, Resman F, Riesbeck K, & Månsson F. 2017. Antimicrobial combination treatment including ciprofloxacin decreased the mortality rate of Pseudomonas aeruginosa bacteraemia: a retrospective cohort study. European Journal of Clinical Microbiology & Infectious Diseases 36(7), 1187–1196.

Subedi D; Vijay AK; Willcox M. 2018. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clinical and Experimental Optometry 101 (2): 162-171.

Mensa J; Barberán J; Soriano A; Llinares P; Marco F; Cantón R; Bou G; González Del Castillo J; Maseda E; Azanza JR; Pasquau J; García-Vidal C; Reguera JM; Sousa D, Gómez J; Montejo M; Borges M; Torres A; Alvarez-Lerma F; Salavert M; Zaragoza R, Oliver A. 2018. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa : Guidelines by the Spanish Society of Chemotherapy 31 (1): 78–100.

Bialvaei AZ; Samadi Kafil H. 2015. Colistin, mechanisms and prevalence of resistance. Currient Medicine Residence Opinion 31: 707–721.

Kralik P; Ricchi M. 2017. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology 8: 1–9.

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone di- ameters. Version 2.0. EUCAST. 2012. Available at: http://

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 24th informational supplement M100-S24. Wayne, PA: CLSI; 2017.

Egbule OS. 2016. Detection and transfer of Extended Spectrum β Lactamase Enzymes from Untreated Hospital Waste Water. AdvMicrobiol 06 (07): 512-520.

Courtois N; Caspar Y; Maurina M. 2018. Phenotypic and genetic resistance traits of Pseudomonas aeruginosa strains infecting cystic fibrosis patients: A French cohort study. Internat J Antimicrob Agents 52: 358–364.

Figueiredo D; Vianna R; Nascimento J. 2013. Epidemiologia da Infecção Hospitalar em uma Unidade de Terapia Intensiva de um Hospital Público Municipal de João Pessoa-PB. Rev Bras Ciências da Saúde 17 (3): 233–240.

Sharma R; Park TE; Moy S. 2016. Ceftazidime-Avibactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination for the Treatment of Resistant Gram-negative Organisms. Clinical Therapeutics, 38; 431-444.

Pereira GH; Müller PR; Zanella RC; Lima MJC; Torchio DS; Levin AS. 2010. Outbreak of vancomycin-resistant enterococci in a tertiary hospital: The lack of effect of measures directed mainly by surveillance cultures and differences in response 55 between Enterococcus faecium and Enterococcus faecalis. Am J Infect Control 38: 406- 409.

Jarlier V; Nicolas MH; Fournier G; Philippon A. 1988. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Review of Infect Diseases 10 (4): 867-878.

Bonnet R, Bru JP, Caron F, Cattoir V, Chardon H, Courvalin P. 2018. Pseudomonas spp. Comité de l’Antibiothérapie de la Société Française de Microbiologie

Comité de l’Antibiothérapie de la Société Française de Microbiologie. 2017. Pseudomonas aeruginosa: recommandations. Société Française de Microbiologie 2013:24–6.

Anvisa. Nota Técnica Nº 01/2013: Medidas de Prevenção e Controle de Infecções por Enterobactérias Multiresistentes, 2013.

Hidron AI; Edwards JR; Patel J; Horan TC; Sievert DM; Pollock DA; Fridkin SK. 2009. National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect ContROL Hosp Epidemiol 29 (11): 996-1011.

Park H; Lee SH; Kim MK; Kim JH; Lim HS. 2009. Polychlorinated biphenyl congeners in soils and lichens from King George Island, South Shetland Islands, Antarctica. Antarctic Science 22: 31–38.

Picoli SU. 2008. Metalo- β -lactamase e Pseudomonas aeruginosa. Rev Bras Anál Clínicas 40 (4): 273–277.

Hurezeanu DD; Dragonu L; Canciovici C; Ristea D; Ene D; Cotulbea M; Peter M; Dumitraşcu F; Bălan M. 2013. Infections with Pseudomonas aeruginosa in patients admitted to the “ Victor Babe ş ” Clinical Hospital of Infectious Diseases and Pneumology , BioMed Central Infection disease 13 (1): 1–2.

Sen MR; Bhattacharjee A. 2010. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Devel Countries 1 (4): 239-42.

Lima VN; Oliveira-Tintino CD; Santos ES; Morais LP; Tintino SR; Freitas TS; Geraldo YS; Pereira RL; Cruz RP; Menezes IR; Coutinho HD. 2016. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis 99: 56–61.

Gasparetoo PB; Martins AF; Zavascki A; Barth AL. 2007. Ocurrence of blaSPM-1 and blaIMP-1 genes of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa from three universitary hospitals in the city of Porto Alegre, Brazil. Braz J Microbiol 38: 108-109.

Marchiaro P; Mussi MA; Ballerini V; Pasteran F; Viale AM; Vila AJ; Limansky AS. 2005. Sensitive EDTA-based microbiological assays for detection of metallo-β- lactamases in nonfermentative Gram-negative bacteria. J Clin Microbiol 43 (11): 5648-5652.

Toleman MA; Simm AM; Murphy TA; Gales AC; iedenbach DJ; Jones RN; and Walsh TR. 2002. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in America: report from the SENTRY antimicrobial surveillance programme. J Antimicrobial Chemotherapy 50: 673– 679.

Sader HS; Reis AO; Silbert S; Gales AC. 2005. IMPs, VIMs and SPMs: the diversity of metallo-β-lactamases produced by carbapenem resistant Pseudomonas aeruginosa in a Brazilian hospital. Clinic Microbiol Infection 11 (1): 73-6.

Franco MR; Caiaffa-Filho HH; Burattini MN; Rossi F. 2010. Metallo- β-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics 65 (9): 825-829.

Xavier DE; Picão RC; Girardello R; Fehlberg LC; Gales AC. 2010. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BioMed Central microbiol 10: 217.

Zavascki AP; Barth AL; Gonçalves AL; Moro AL; Fernandes JF; Martins AF; Ramos F; Goldani LZ. 2006. The influence of metallo-Blactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrobial Chemotherapy 58 (2): 387-92.

Cezário RC; Duarte De Morais L; Ferreira JC; Costa-Pinto RM; da Costa Darini AL; Gontijo-Filho PP. 2009. Nosocomial outbreak b yimipenem- resistant metallo-b-lactamase-producing Pseudomonas aeruginosa in an adult intensive care unit in a Brazilian teaching hospital. Enfermidades Infecciosas e Microbiolia Clinica 27 (5): 269-74.

Liu CP; Chen TL; Wang NY; Chow SF; Lin JC; Yan TR. 2017. Detection of Pseudomonas aeruginosa isolates carrying the blaOXA-142 extended-spectrum β-lactamase gene in Taiwan. . J Microbiol Immunol Infect 50 (1): 68–74.

Courtois N; Caspar Y; Maurina M. 2018. Phenotypic and genetic resistance traits of Pseudomonas aeruginosa strains infecting cystic fibrosis patients: A French cohort study. International Journal of Antimicrobial Agents 52: 358–364.

Araújo CP; Osório AL; Jorge KS; Ramos CA; Souza Filho AF; Vidal CE; Vargas AP; Roxo E; Rocha AS; Suffys PN; Fonseca JRAA; Silva MR; Barbosa Neto JD; Cerqueira VD; Araújo FR. 2014. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR. Braz J Microbiol 45 (2), 633-640.

Gwida M; El-Sashker M; MEelzer F; El-Diast M; El-Beskawy M; Neubauer H. 2016. Use of serology and real time PCR to control an outbreak of bovine brucellosis at a dairy cattle farm in the Nile Delta region, Egypt. Irish Vet Assoc 69 (3): 1-7.

Buim MR; Mettifogo EM; Timenetsky J; Kleven S; Ferreira AJP. 2009. Epidemiological survey on Mycoplasma gallisepticum and M. synoviae by multiplex PCR in commercial poultry. Pesquisa Vet Bras 29 (7): 552-556.

Huang XZ; Frye JF; Chahine MA; Glenn LM; Ake JÁ; Su W; Nikolich MP; Lesho EP. 2012. Characteristics of Plasmids in Multi-Drug-Resistant Enterobacteriaceae Isolated during Prospective Surveillance of a Newly Opened Hospital in Iraq PLoS One. 7 (7): e40360.



  • There are currently no refbacks.