Microencapsulation by lyophilization of natural carotenoids using different wall materials/ Microencapsulação por liofilização de carotenoides naturais utilizando diferentes materiais de parede

Lilianne Tassinari Braga, Carina Molins Borba, Tabita Veiga Dias Rodrigues, Caroline Costa Moraes, Janaina Fernandes de Medeiros Burkert


Due to the biological importance of carotenoids, several works have been developed aiming for the reduction of carotenoid degradation, and one notable proposed alternative has been the formation of microcapsules. Therefore, the aim of the current paper was the microencapsulation of carotenogenic extracts from Rhodotorula mucilaginosa and Sporidiobolus pararoseus by a lyophilization method utilizing gum arabic, xanthan gum, sodium alginate and soy protein-like wall materials. The gum arabic showed the greatest efficiency of encapsulation for the R. mucilaginosa (66.3±0.8 %) and S. pararoseus (91.4±0.9 %) carotenogenic extracts, while the soy protein showed the lowest efficiency of encapsulation (40.7±1.1 % for R. mucilaginosa and 68.5±1.5 % for S. pararoseus). Scanning electron micrographs (SEM) showed irregular structure formation that was independent of the material utilized for the encapsulation. In this way, it was possible to observe that the wall materials directly affect the encapsulation efficiencies, morphology, and thermal behavior of the capsules of natural carotenoids.


pigment, encapsulation, yeasts, bioactive, food, color, protein.

Full Text:



Andrade, S. F., Nascimento R. S., Carvalho, F. A., Santos, A. M., Pagani, A. A. C. (2020). Microencapsulação de cúrcuma longa (Açafrão) pelo método de gelificação iônica, agregando valor ao vinagre de álcool. Braz. J. of Develop., 6(3), 12387-12398. https://doi.org/ 0.34117/bjdv6n3-195

Ausich, R. L. (1997). Commercial opportunities for carotenoid production by biotechnology. Pure and Applied Chemistry, 69(10), 2169–2173. https://doi.org/10.1351/pac199769102169

Barbosa, M. I. M. J., Borsarelli, C. D., & Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 38(8–9), 989–994. https://doi.org/10.1016/j.foodres.2005.02.018

Cardoso, L. A. A., Karp, S. G., Vendruscolo, F., Kanno, K. Y. F., Zoz, L. I. C., & Carvalho, J. C. (2017). Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products. In D. J. Cvetkovic & G. S. Nikolic (Eds.), Carotenoids. InTech. https://doi.org/10.5772/65523

Chen, J., Li, F., Li, Z., McClements, D. J., & Xiao, H. (2017). Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocolloids, 69, 49–55. https://doi.org/10.1016/j.foodhyd.2017.01.024

Cipolatti, E P. (2012). Obtenção de carotenoides microbianos com atividade antioxidante a partir de coprodutos agroindustriais (Dissertação de mestrado). Universidade Federal do Rio Grande, Rio Grande.

Cipolatti, E. P., Bulsing, B. A., Sá, C. dos S., Burkert, C. A. V., Furlong, E. B., & Burkert, J. F. M. (2015). Carotenoids from Phaffia rhodozyma: Antioxidant activity and stability of extracts. African Journal of Biotechnology, 14(23), 1982–1988. https://doi.org/10.5897/ajb2015.14682

Da Fonseca, R. A. dos S., Rafael, R. da S., Kalil, S. J., Burkert, C. A. V., & Burkert, J. F. de M. (2011). Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma. African Journal of Biotechnology, 10(7), 1165–1171. https://doi.org/10.5897/AJB10.1034

Da Rosa, C. G., Borges, C. D., Zambiazi, R. C., Rutz, J. K., da Luz, S. R., Krumreich, F. D., Benvenutti, E. V., & Nunes, M. R. (2014). Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). LWT - Food Science and Technology, 58(2), 527–533. https://doi.org/10.1016/j.lwt.2014.03.042

Daoub, R. M. A., Elmubarak, A. H., Misran, M., Hassan, E. A., & Osman, M. E. (2018). Characterization and functional properties of some natural Acacia gums. Journal of the Saudi Society of Agricultural Sciences, 17(3), 241–249. https://doi.org/10.1016/j.jssas.2016.05.002

De Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302. https://doi.org/10.1016/j.idairyj.2009.11.008

Gómez-Mascaraque, L. G., Perez-Masiá, R., González-Barrio, R., Periago, M. J., & López-Rubio, A. (2017). Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocolloids, 73, 1–12. https://doi.org/10.1016/j.foodhyd.2017.06.019

Gonnet, M., Lethuaut, L., & Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146(3), 276–290. https://doi.org/10.1016/j.jconrel.2010.01.037

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835. https://doi.org/10.1080/07373930802135972

Laine, P., Kylli, P., Heinonen, M., & Jouppila, K. (2010). Does Microencapsulation Improve Storage Stability of Cloudberry (Rubus chamaemorus) Ellagitannins? Water Properties in Food, Health, Pharmaceutical and Biological Systems: ISOPOW 10, 563–569. https://doi.org/10.1002/9780470958193.ch50

Lam, R. S. H., & Nickerson, M. T. (2013). Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry, 141(2), 975–984. https://doi.org/10.1016/j.foodchem.2013.04.038

Lopes, N. A., Remedi, R. D., dos Santos Sá, C., Burkert, C. A. V., & de Medeiros Burkert, J. F. (2017). Different cell disruption methods for obtaining carotenoids by Sporodiobolus pararoseus and Rhodothorula mucilaginosa. Food Science and Biotechnology, 26(3), 759–766. https://doi.org/10.1007/s10068-017-0098-y

Marques, C. S. F., Rezende, P., Andrade, L. N., Mendes, T. M. F., Allegretti, S. M., Bani, C., Chaud, M. V., Batista de Almeida, M., Souto, E. B., Pereira da Costa, L., & Severino, P. (2018). Solid dispersion of praziquantel enhanced solubility and improve the efficacy of the schistosomiasis treatment. Journal of Drug Delivery Science and Technology, 45, 124–134. https://doi.org/10.1016/j.jddst.2018.03.009

McClements, D. J. (2004). Protein-stabilized emulsions. Current Opinion in Colloid and Interface Science, 9(5), 305–313. https://doi.org/10.1016/j.cocis.2004.09.003

Michelon, M., de Borba, T. de M., Rafael, R. da S., Burkert, C. A. V., & Burkert, J. F. de M. (2012). Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Science and Biotechnology, 21(1), 1–8. https://doi.org/10.1007/s10068-012-0001-9

Munavalli, B., Torvi, A., & Kariduraganavar, M. (2018). A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer, 142, 293–309. https://doi.org/10.1016/j.polymer.2018.03.044

Nogueira, M. B., Prestes, C. F., & Burkert, J. F. M. (2017). Microencapsulation by lyophilization of carotenoids produced by Phaffia rhodozyma with soy protein as the encapsulating agent. Food Science and Technology, 37(spe), 1–4. https://doi.org/10.1590/1678-457x.05417

Otero, D. M., Bulsing, B. A., Da M Huerta, K., Rosa, C. A., Zambiazi, R. C., Burkert, C. A. V., & De M Burkert, J. F. (2019). Carotenoid-producing yeasts in the brazilian biodiversity: Isolation, identification and cultivation in agroindustrial waste. Brazilian Journal of Chemical Engineering, 36(1), 117–129. https://doi.org/10.1590/0104-6632.20190361s20170433

Özkan, G., & Ersus Bilek, S. (2014). Microencapsulation of Natural Food Colourants. International Journal of Nutrition and Food Sciences, 3(3), 145–156. https://doi.org/10.11648/j.ijnfs.20140303.13

Parajó, J. C., Santos, V., & Vázquez, M. (1998). Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochemistry, 33(2), 181–187. https://doi.org/10.1016/S0032-9592(97)00045-9

Pralhad, T., & Rajendrakumar, K. (2004). Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. Journal of Pharmaceutical and Biomedical Analysis, 34(2), 333–339. https://doi.org/10.1016/S0731-7085(03)00529-6

Rajam, R., & Anandharamakrishnan, C. (2015). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95–103. https://doi.org/10.1016/j.jfoodeng.2015.05.029

Rios, D. A. da S., Borba, T. de M. de, Kalil, S. J., & Burkert, J. F. M. (2015). Rice parboiling wastewater in the maximization of carotenoids bioproduction by Phaffia rhodozyma. Ciência e Agrotecnologia, 39(4), 401–410. https://doi.org/10.1590/s1413-70542015000400011

Rutz, J. K., Borges, C. D., Zambiazi, R. C., Cleonice, G., & Médelin, M. (2016). Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, 202, 324–333. https://doi.org/10.1016/j.foodchem.2016.01.140

Rutz, J. K., Zambiazi, R. C., Borges, C. D., Krumreich, F. D., da Luz, S. R., Hartwig, N., & da Rosa, C. G. (2013). Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydrate Polymers, 98(2), 1256–1265. https://doi.org/10.1016/j.carbpol.2013.07.058

Santos, F. H. dos, Silveira, B. M. P. e, Souza, L. L. de, Duarte, A. K. C., Ribeiro, M. C., Pereira, K. C., & Costa, J. M. G. da. (2020). Influence of wall materials on the microencapsulation of pequi oil by spray drying. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.13219

Sauvant, P., Cansell, M., Hadj Sassi, A., & Atgié, C. (2012). Vitamin A enrichment: Caution with encapsulation strategies used for food applications. Food Research International, 46(2), 469–479. https://doi.org/10.1016/j.foodres.2011.09.025

Sousdaleff, M., Baesso, M. L., Neto, A. M., Nogueira, A. C., Marcolino, V. A., & Matioli, G. (2013). Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: Stability, solubility, and food application. Journal of Agricultural and Food Chemistry, 61(4), 955–965. https://doi.org/10.1021/jf304047g

Sutter, S. C., Buera, M. P., & Elizalde, B. E. (2007). β-Carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion. International Journal of Pharmaceutics, 332(1–2), 45–54. https://doi.org/10.1016/j.ijpharm.2006.09.023

Tisch, D., & Schmoll, M. (2010). Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 85(5), 1259–1277. https://doi.org/10.1007/s00253-009-2320-1

Vaniski, R., Corti, D., & Drunkler, D. A. (2017). Técnicas e Materiais Empregados na Microencapsulação de Probióticos. Brazilian Journal of Food Research, 8(1), 156. https://doi.org/10.3895/rebrapa.v8n1.3651

Yoo, A. Y., Alnaeeli, M., & Park, J. K. (2016). Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochemistry, 51(4), 463–473. https://doi.org/10.1016/j.procbio.2016.01.008

Zuanon, L. A. C., Malacrida, C. R., & Telis, V. R. N. (2013). Production of turmeric oleoresin microcapsules by complex coacervation with gelatin-gum arabic. Journal of Food Process Engineering, 36(3), 364–373. https://doi.org/10.1111/jfpe.12003

DOI: https://doi.org/10.34117/bjdv7n7-263


  • There are currently no refbacks.