Using SEM and EDS for material’s analysis of the small hydroelectric power plant: case study/ Utilizando MEV e EDS para análise do material de uma pequena central hidrelétrica: estudo de caso

Gláucia Nolasco de Almeida Mello, Cynara Fiedler Bremer, Fernanda Gallotti Costa, Raissa Pinheiro Dutra

Abstract


Small Hydroelectric Power Plants (SHPPs) are hydroelectric of reduced size and power, i.e., less than thirteen square kilometres of reservoir area and power less than 30 MW (megawatts). SHPPs account for about 3.7% of all installed capacity of the Brazilian power generation system, which demonstrates their relevance in the national scenario. In addition to this function, SHPPs also influence the socioeconomic development of the region by helping to create direct and indirect jobs. In this context, the goal of this work was the microstructural analysis of the concrete of the dam of SHPP Ponte Queimada, installed in Rio Casca, Minas Gerais, Brazil. Ponte Queimada was built in 1936; over the years it underwent some interventions and, currently, it undergoes a new intervention for maintenance and repairs. By means of visual inspection, the sites for collecting the samples were identified. The samples were analysed regarding the morphology and chemical composition of the concrete using Scanning Electron Microscope (SEM) and energy dispersive spectrometer (EDS). Based on the collected samples, isolated points of occurrence of alkali-aggregate reaction (AAR) were identified. The observed samples, besides possessing chemical elements compatible with manifestations of AAR, also presented shapes that visually resemble to them. It was concluded that the use of SEM is an effective and relatively simple alternative for the identification of pathological manifestations that could compromise the durability of the structures, often allowing the determination of repair measures in anticipation of the prevention of future problems.


Keywords


Pathological manifestations, Semi-destructive testing, Scanning Electron Microscope, Energy Dispersive Spectrometer.

Full Text:

PDF

References


Agência Nacional das Águas (Brasil). (2016) Diretrizes Para Elaboração de Projetos de Barragens - Manual do Empreendedor sobre Segurança de Barragens [Guidelines for Elaboration of Dams Projects - Entrepreneur's Manual on Dams Safety], vol. 6, Brasília: ANA, 2016. Retrieved January 5, 2018 from http://www.snisb.gov.br/portal/snisb/downloads/ManualEmpreendedor .

Agência Nacional de Energia Elétrica (Brasil). (2008) Atlas de Energia Elétrica do Brasil [Atlas of Electric Energy of Brazil]. 3. ed. Brasília: ANEEL, 2008.

Agência Nacional de Energia Elétrica (Brasil). (2018) Banco de Informações de Geração [Generation Information Bank]. Brasília: ANEEL, Retrieved January 5, 2018: http://www.aneel.gov.br/informacoes-tecnicas/-/asset_publisher/CegkWaVJWF5E/content/big-banco-de-informacoes-de-geracao/655808?inheritRedirect=false .

Battagin, I. (2015). A Durabilidade das Estruturas de Concreto como Parâmetro de Sustentabilidade [The Durability of Concrete Structures as a Sustainability Parameter]. Revista Concreto & Construções, 79, 58-64, 2015.

Campos, A.; L'opez, C. M.; Blanco, A.; Aguado, A.(2016). Structural Diagnosis of a Concrete Dam with Cracking and High Nonrecoverable Displacements. Journal of Performance of Constructed Facilities, ASCE, 30 (5), 2016. DOI: 10.1061/(ASCE)CF.1943-5509.0000869

Cardoso, F. G.; De Azevedo Baêta, D.; Da Costa, D. J. R.; De Medeiros, N (2021). Análise da ocorrência de desgaste por fretting em varetas combustíveis nucleares de Zr-1Nb-Sn-0.1Fe [Analysis of fretting wear occurrence on Zr-1Nb-1Sn-0.1Fe nuclear fuel rods]. Brazilian Journal of Development, 7 (3), 2021. DOI: 10.34117/bjdv7n3-669

Chinchón-Payá, S.; Aguado, A.; Coloma, F.; Chinchón, S. (2015). Study of Aggregate Samples with Iron Sulfides through Micro X-ray Fluorescence (XRF) and X-ray Photoelectron Spectroscopy (XPS). Materials and Structures, 48, 1285-1290, 2015. DOI: 10.1617/s11527-013-0233-z

CODES, R. N. de. (2006). Estudo da mecânica da danificação aplicada ao concreto com efeitos de corrosão [Mechanics' study of damage applied to concrete with corrosion effects]. Dissertation (Master Degree) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, Brazil, 2006. Retrieved January 15, 2018 from: http://www.repositorio.ufc.br/handle/riufc/3669

De Schutter, Geert. (2012). Damage to concrete structures. Boca Raton, Fl: CRC Press. 2012. ISBN 978-0-415-60388.

Fernandes, I.; Silva, A. S.; Gomes, J. P.; Castro, A. T. de; Noronha, F.; Ribeiro, M. dos A. (2013). Characterization of Deleterious Expansive Reactions in Fagilde Dam. Metallography, Microstructure, and Analysis, 2, 299-312, 2013. DOI: 10.1007/s13632-013-0089-1

Figueiredo, E. J. P.; Meira G. R. (2011) Corrosão das Armaduras das Estruturas de Concreto [Steel corrosion of concrete structures]. In: ISAIA, Geraldo Cechella. (Ed.). Concreto: Ciência e Tecnologia. São Paulo: IBRACON, 1, 903-932, 2011.

Galvão, J. C. A.; Portella, K. F.; Kormann, A. C. M.(2012). Abrasive Effects Observed in Concrete Hydraulic Surfaces of Dams and Application of Repair Materials. Abrasion Resistance of Materials, Dr Marcin Adamiak (Ed.), ISBN: 978-953-51-0300-4, InTech, Retrieved January 15, 2018 from: http://www.intechopen.com/books/abrasion-resistance-of-materials/abrasive-effects-observed-in-concretehydraulic-surfaces-of-dams-and-application-of-repair-materials

Gomes Neto, D. P.; Barreto, L. S.; Uma discussão sobre a reação álcali-agregado (RAA), seu mecanismo e os fatores que a influenciam [A discussion of the alkali-aggregate reaction (AAR), its mechanism and the factors influencing it]. In Proceedings of IX Congresso Internacional sobre manifestação patológica e recuperação de estruturas. João Pessoa, Brazil; june 2013.

Hasparyk, N. P. (2005) Investigação de Concretos Afetados pela Reação Álcali-agregado e Caracterização Avançada do Gel Exsudado [Investigation of concretes affected by the alkali-aggregate reaction and advanced characterization of the exudited gel]. Thesis (Doctor Degree). Universidade Federal do Rio Grande do Sul. Porto Alegre: Br-RS, 2005.

Hasparyk, N. P. (2011) Reação Álcali-Agregado no Concreto [Alkali-aggregate reaction (AAR) in concrete]. (2011) In: ISAIA, Geraldo Cechella. (Ed.). Concreto: Ciência e Tecnologia. São Paulo: IBRACON, 2, 933-1002, 2011.

Hasparyk, N. P.; Kuperman, S. C.; Torres, J. R. (2014). Ataque combinado da RAA e DEF em concreto de fundação de edificação [Combined AAR and DEF (delayed ettringite formation) attack on building foundation concrete]. Revista Concreto e Construções, 74, 100-108, 2014.

Helene, P.; Carvalho, M.; Pacheco, J. (2017). Engineering Field Tests for Alkali-Aggregate Reaction. Structural Concrete, 18, 349-355, 2017. DOI: 10.1002/suco.201600090

Horszczaruk, E.; Brzozowski, Piotr. (2017). Effects of Fluidal Fly Ash on Abrasion Resistance of Underwater Repair Concrete. WEAR, 376, 15–21, 2017. DOI: 10.1016/j.wear.2017.01.051

Ikumi, T.; Cavalaro, S. H.P.; Segura, I., Aguado, A. (2014). Alternative Methodology to Consider Damage and Expansions in External Sulfate Attack Modeling. Cement and Concrete Research, 63, 105-116, 2014. DOI: 10.1016/j.cemconres.2014.05.011

JEOL USA. (2018). SEM Scanning Electron Microscope A to Z: Basic Knowledge for Using the SEM. Retrieved January 15, 2018 from: https://www.jeolusa.com/DesktopModules/Bring2mind/DMX/Download.aspx?EntryId=598&Command=Core_Download&language=en-US&PortalId=2&TabId=320

Krivenko, P.; Drochytka, R.; Gelevera, A.; Kavalerova, E. (2014). Mechanism of Preventing the Alkali–Aggregate Reaction in Alkali Activated Cement Concretes. Cement & Concrete Composites, 45, 157-165, 2014. DOI: 10.1016/j.cemconcomp.2013.10.003

Kuperman, S. C., Cifu, S. (2006). Projeto de Barragens de Concreto [Concrete Dams Project]. Revista Concreto e Construções, 42, 82-89, 2006.

Lima, M. G. de. (2011). Ações do Meio Ambiente sobre as Estruturas de Concreto [Environmental Actions on Concrete Structures]. In: ISAIA, Geraldo Cechella. (Ed.). Concreto: Ciência e Tecnologia, v. 1. São Paulo: IBRACON, 1 733-772, 2011.

Mehta, P. K.; Monteiro, P. J. M. (2006). Concrete: microstructure, properties and materials. McGraw-Hill, Columbus, USA. 2006.

Messa, G. V., Branco, R. De L., Dalfré Filho, J. G., Malavasi, S. (2018). A combined CFD-Experimental Method for Abrasive Erosion Testing of Concrete. Journal of Hydrology Hydromech, 66 (1), 121–128, 2018. DOI: 10.1515/johh-2017-0042

Owsiak, Z.; Zapała-Sławeta, J.; Czapik, P. (2015). Diagnosis of Concrete Structures Distress due to Alkali-Aggregate Reaction. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63 (1), 2015. DOI: 10.1515/bpasts-2015-0003

Pardo-Bosch, F.; Aguado, A. (2017). Damage Diagnosis in Concrete Dams with Presented Expansive Damage Based on Medical Propaedeutics. Journal of Performance of Constructed Facilities, ASCE, 31 (5), 2017. DOI: 10.1061/(ASCE)CF.1943-5509.0001035

Rackwitz, V.; Krumrey, M.; Laubis, C.; Scholze, F.; Hodoroaba, V. (2015). New Reference and Test Materials for the Characterization of Energy Dispersive X-ray Spectrometers at Scanning Electron Microscopes. Analytical and Bioanalytical Chemistry, 407, 3045–3053, 2015. DOI: 10.1007/s10967-012-2374-x

Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J. H.; Thomas, M. D. A. (2015). Alkali-silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 76, 130–146, 2015. DOI: 10.1016/j.cemconres.2015.05.024

Shaban, S. E.; Ibrahiem, N. M.; El-mongy, S. A.; Elshereafy, E. E. (2013). Validation of Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) and Gamma Spectrometry to Verify Source Nuclear Material for Safeguards Purposes. Journal of Radioanalytical and Nuclear Chemistry, 296, 1219–1224, 2013. DOI: 10.1007/s10967-012-2374-x

Soares, B. M. C.; Saron, E. S. (2010). Micro análise elementar de materiais: aplicações do sistema MEV-EDX [Micro elemental analysis of materials: applications of the SEM-EDX system]. Boletim de tecnologia e desenvolvimento de embalagens: ITAL. Campinas, 2010. Retrieved January 15, 2018 from: https://www.researchgate.net/profile/Beatriz_Soares2/publication/313710967_MICROANALISE_ELEMENTAR_DE_MATERIAIS_APLICACOES_DO_SISTEMA_MEV-EDX/links/58a3adabaca272d3a4983681/MICROANALISE-ELEMENTAR-DE-MATERIAIS-APLICACOES-DO-SISTEMA-MEV-EDX.pdf

Soares, L. J.(2016). Memorial Descritivo da CGH Nova Ponte Queimada II [Descriptive Memorial of the New Ponte Queimada II]. Companhia Energética Integrada, 2016.

Sollero, M. B. S.; Baima, L. Q. G.; Bolorino, H. (2016). Avaliação de RAA na Barragem de Pirapora [AAR evaluation in the Pirapora Dam]. Revista Concreto & Construções, (83), 69-74, 2016.

Vieira Jr., L. P., Machado, O. B., Amaro, P. R., Helene, P. (2006). Segurança das Barragens de Concreto [Concrete Dam Security] . Revista Concreto e Construções, 42, 56-61.

Vieira Jr., L. P., Salles, F. M. (2011). A Tecnologia do Concreto Aplicada ao Projeto de Barragens [Concrete Technology Applied to the Dams Design]. Revista Concreto e Construções, 63, 15-23.

Zhu, X.; Li, J.; Zhang, Y.; Song, H.; Zheng, H. (2017). The Sulphate Effect on Lijiaxia Concrete Dam (China) Gallery. Journal of Chemistry, 2017. DOI: 10.1155/2017/8698759




DOI: https://doi.org/10.34117/bjdv7n7-262

Refbacks

  • There are currently no refbacks.