Effect of thymol vapor phase on lung cancer cells exposed to radiation / Efeito da fase vapor do timol em células de câncer de pulmão expostas à radiação

Jacqueline Gonçalves dos Santos, Marilene Biavatti, Gianlucca Correia Mansani, Luiza Stolz Cruz, Carla Cristine Kanunfre

Abstract


Radiotherapy is one of the therapeutic strategies for lung cancer treatment. However, it is important to improve the radiation effect in order to minimize the influence of radioresistance on lung cancer cells. Thymol is a volatile natural compound that could directly reach the lung tissue by inhalation and cause greater tumor cell death. We evaluated the cytotoxic activity of thymol vapor phase combined with radiation on A549 lung tumor cells to determine whether this compound would have a radiosensitizing potential. Lung tumor (A549) and non-tumor (MRC-5) cells were treated with thymol vapor phase (31.25-125 μg/mL/well) for 6 hours before exposure to 9 Gray of radiation. After 48 hours, cell viability assays were performed to assess whether the treatment led to cell death. The pretreatment with thymol vapor phase enhanced death of A549 lung tumor cells exposed to radiation; the reduction on cell viability was greater than that caused only by radiation. For MRC-5 non-tumor cells the pretreatment was less cytotoxic compared to tumor cells. Therefore, thymol vapor phase acted in synergy with the radiation selectively on the tumor cells.


Keywords


Irradiation, Radiosensitizing Potential, Thymol, Natural Compound, Mrc-5 Cells.

References


Arechaga-Ocampo, E., Lopez-Camarillo, C., Villegas-Sepulveda, N., Gonzalez-De la Rosa, C. H., Perez-Añorve, I. X., Roldan-Perez, R., … Garcia-Carranca, A. (2017). Tumor suppressor miR-29c regulates radioresistance in lung cancer cells. Tumor Biology, 39(3), 1–14. https://doi.org/10.1177/1010428317695010

Chauhan, A. K., Bahuguna, A., Paul, S., & Kung, S. C. (2017). Thymol Elicits HCT-116 Colorectal Carcinoma Cell Death Through Induction of Oxidative Stress. Anti-Cancer Agents in Medicinal Chemistry, 17(14), 1942–1950. https://doi.org/10.2174/1871520617666170327121228

Deb, D. D., Parimala, G., Devi, S. S., & Chakraborty, T. (2011). Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chemico-Biological Interactions, 193, 97–106. https://doi.org/10.1016/j.cbi.2011.05.009

Hsu, S. S., Lin, K. L., Chou, C. T., Chiang, A. J., Liang, W. Z., Chang, H. T., … Jan, C. R. (2011). Effect of thymol on Ca2+ homeostasis and viability in human glioblastoma cells. European Journal of Pharmacology, 670(1), 85–91. https://doi.org/10.1016/j.ejphar.2011.08.017

Islam, M. T., Khalipha, A. B. R., Bagchi, R., Mondal, M., Smrity, S. Z., Uddin, S. J., … Rouf, R. (2019). Anticancer activity of thymol: A literature-based review and docking study with emphasis on its anticancer mechanisms. IUBMB Life, 71(1), 9–19. https://doi.org/10.1002/iub.1935

Jamali, T., Kavoosi, G., Safavi, M., & Ardestani, S. K. (2018). In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Scientific Reports, 8(1), 1–19. https://doi.org/10.1038/s41598-018-34055-w

Ko, E. C., Raben, D., & Formenti, S. C. (2018). The integration of radiotherapy with immunotherapy for the treatment of non–small cell lung cancer. Clinical Cancer Research, 24(23), 5792–5806. https://doi.org/10.1158/1078-0432.CCR-17-3620

Li, Y., Wen, J. ming, Du, C. jun, Hu, S. min, Chen, J. xi, Zhang, S. geng, … Ding, K. feng. (2017). Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochemical and Biophysical Research Communications, 491(2), 530–536. https://doi.org/10.1016/j.bbrc.2017.04.009

Mosmann, T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival : Application to Proliferation and Cytotoxicity Assays. Journal of Immunological Methods, 65, 55–63. https://doi.org/https://doi.org/10.1016/0022-1759(83)90303-4

Nunes, C. R., Valente, P. M., Silva, F. D., Valente, V. M. M. (2021). Chemical composition and antifungal activity of Thymus vulgaris essential oil on Aspergillus niger, Penicillium expansum, Sclerotinia sclerotiorum and Sclerotium rolfsii. Brazilian Journal of Development, 7(2), 14250-14260. https://doi.org/10.34117/bjdv7n2-173

Papazisis, K. T., Geromichalos, G. D., Dimitriadis, K. A., & Kortsaris, A. H. (1997). Optimization of the sulforhodamine B colorimetric assay. Journal of Immunological Methods, 208(2), 151–158. https://doi.org/10.1016/S0022-1759(97)00137-3

Rai, Y., Pathak, R., Kumari, N., Sah, D. K., & Pandey, S. (2018). Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-19930-w

Ribble, D., Goldstein, N. B., Norris, D. A., & Shellman, Y. G. (2005). A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnology, 7, 1–7. https://doi.org/10.1186/1472-6750-5-12

Salehi, B., Mishra, A. P., Shukla, I., Sharifi-Rad, M., Contreras, M. del M., Segura-Carretero, A., … Sharifi-Rad, J. (2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32(9), 1–19. https://doi.org/10.1002/ptr.6109

Samaila, D., Toy, B. J., Wang, R. C., & Elegbede, J. A. (2004). Monoterpenes enhanced the sensitivity of head and neck cancer cells to radiation treatment in vitro. Anticancer Research, 24, 3089–3095.

Seal, S., Chatterjee, P., Bhattacharya, S., Pal, D., Dasgupta, S., Kundu, R., … Bhattacharya, S. (2012). Vapor of Volatile Oils from Litsea cubeba Seed Induces Apoptosis and Causes Cell Cycle Arrest in Lung Cancer Cells. PLoS ONE, 7(10), 1–11. https://doi.org/10.1371/journal.pone.0047014

Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Reviews Drug Discovery, 8(7), 579–591. https://doi.org/10.1038/nrd2803

Velho‑Pereira, R., Kumar, A., Pandey, B. N., Jagtap, A. G., & Mishra, K. P. (2011). Radiosensitization in human breast carcinoma cells by thymoquinone: role of cell cycle and apoptosis. Cell Biology International, 35(10), 1025–1029. https://doi.org/10.1042/cbi20100701

Xie, K., Tashkin, D. P., Luo, M. Z., & Zhang, J. Y. (2019). Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model. Pharmacology Research and Perspectives, 7(5), 1–10. https://doi.org/10.1002/prp2.516

Xu, Z., Yan, Y., Xiao, L., Dai, S., & Gong, Z. (2017). Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS ONE, 12(4), 1–14. https://doi.org/https://doi. org/10.1371/journal.pone.0175977




DOI: https://doi.org/10.34117/bjdv7n7-009

Refbacks

  • There are currently no refbacks.