Microwave-assisted synthesis of a new fluorinated Biphenyl-Schiff base with potential application in nonlinear optical / Síntese assistida por micro-ondas de uma nova Bifenil-Base de Schiff Fluorada com potencial aplicação em óptica não linear

Daniela Corrêa Santos, Marcos Antonio de Abreu Lopes Junior, Diego Fernando da Silva Paschoal, Andréa Luzia Ferreira de Souza

Abstract


The new fluorinated Biphenyl-Schiff Base 3 was synthesized by a synthetic route involving three steps, with the formation of two intermediates precursors. Primarily by the result of a Suzuki-Miyaura cross-coupling reaction forming the fluorinated 4-aminobiphenyl (1) and later by the result of the nucleophilic substitution SN2 obtaining the intermediate 4-[2-(dimethylamino)ethoxy]-benzaldehyde (2). The Schiff base 3 was obtained through the condensation reaction between intermediates 1 and 2. The methodology involving the reaction to form intermediate 2 proved to be more effective when aided by microwave irradiation providing a significantly higher yield in a shorter time. The GC-MS showed that all compounds were synthesized by the proximity of the calculated m/z ratio and that found. In addition, theoretical calculations showed that the new fluorinated Biphenyl-Schiff Base 3 obtained a value for the first hyperpolarizability ( of 45.1 x 10-30 esu that is approximately five times greater than the experimental value of 9.2 x 10-30 esu for the reference compound (p-nitroaniline).


Keywords


Schiff Base, Biphenyl, Nonlinear Optical Properties, First Hyperpolarizability, Suzuki-Miyaura, Microwave.

References


Baldwin, G.C. An Introduction to Nonlinear Optics; 1st ed.; Plenum Publishing Corporation: New York, 1917; ISBN 9780306200045.

Papagni, A.; Maiorana, S.; Del Buttero, P.; Perdicchia, D.; Cariati, F.; Cariati, E.; Marcolli, W. Synthesis and spectroscopic and NLO properties of “push-pull” structures incorporating the inductive electron-withdrawing pentafluorophenyl group. European J. Org. Chem. 2002, 1, 1380–1384, doi:10.1002/1099-0690(200204)2002:8<1380::AID-EJOC1380>3.0.CO;2-D.

Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118–119, doi:10.1103/PhysRevLett.7.118.

Shi, R.; Han, X.; Xu, J.; Bu, X.H. Crystalline Porous Materials for Nonlinear Optics. Small 2021, 2006416, 1–16, doi:10.1002/smll.202006416.

Burland, D.M. Optical Nonlinearities in Chemistry: Introduction. Chem. Rev. 1994, 94, 1–2, doi:10.1021/cr00025a600.

Verbitskiy, E. V.; Achelle, S.; Bureš, F.; le Poul, P.; Barsella, A.; Kvashnin, Y.A.; Rusinov, G.L.; Guen, F.R. le; Chupakhin, O.N.; Charushin, V.N. Synthesis, photophysical and nonlinear optical properties of [1,2,5]oxadiazolo[3,4-b]pyrazine-based linear push-pull systems. J. Photochem. Photobiol. A Chem. 2021, 404, doi:10.1016/j.jphotochem.2020.112900.

Castet, F.; Gillet, A.; Bureš, F.; Plaquet, A.; Rodriguez, V.; Champagne, B. Second-order nonlinear optical properties of Λ-shaped pyrazine derivatives. Dye. Pigment. 2021, 184, doi:10.1016/j.dyepig.2020.108850.

Undavalli, G.; Joseph, M.; K, A.K.; Philip, R.; Anand, B.; Rao, G.N. Tuning the nonlinear optical properties by engineering donor-acceptor configurations in nitrochalone derivatives. Opt. Mater. (Amst). 2021, 115, 111024, doi:10.1016/j.optmat.2021.111024.

Zhang, D.; Chen, W.; Zou, J.; Luo, J. Critical Role of Non-classical Intermolecular Hydrogen Bonding in Affecting the π−π Stacking and Nonlinear Optical Properties of Tricyanofuran-Based Push−Pull Heptamethines. Am. Chem. Soc. 2021, doi:10.1021/acs.chemmater.1c00704.

Amatore, C.; Jutand, A.; Negri, S.; Fauvarque, J.F. Efficient palladium-catalyzed synthesis of unsymmetrical donor-acceptor biaryls and polyaryls. J. Organomet. Chem. 1990, 390, 389–398, doi:10.1016/0022-328X(90)85107-A.

Ledoux, I.; Zyss, J.; Jutand, A.; Amatore, C. Nonlinear optical properties of asymmetric polyphenyls: Efficiency versus transparency trade-off. Chem. Phys. 1991, 150, 117–123, doi:10.1016/0301-0104(91)90061-W.

Dolbier, W.R. Fluorine chemistry at the millennium. J. Fluor. Chem. 2005, 126, 157–163, doi:10.1016/j.jfluchem.2004.09.033.

O’hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319, doi:10.1039/b711844a.

Adeel, M.; Khalid, M.; Ullah, M.A.; Muhammad, S.; Khan, M.U.; Tahir, M.N.; Khan, I.; Asghar, M.; Mughal, K.S. Exploration of CH⋯F & CF⋯H mediated supramolecular arrangements into fluorinated terphenyls and theoretical prediction of their third-order nonlinear optical response. RSC Adv. 2021, 11, 7766–7778, doi:10.1039/d0ra08528f.

Bai, S.; Wang, D.; Liu, H.; Wang, Y. Recent advances of oxyfluorides for nonlinear optical applications. Inorg. Chem. Front. 2021, 8, 1637–1654, doi:10.1039/d0qi01156h.

Silva, A. da C.; Senra, J.D.; Aguiar, L.C.S.; Simas, A.B.C.; Souza, A.L.F. d.; Malta, L.F.B.; Antunes, O.A.C. Ligand-free Suzuki-Miyaura reactions in PEG 300. Tetrahedron Lett. 2010, 51, 3883–3885, doi:10.1016/j.tetlet.2010.04.092.

De Souza, A.L.F.; Da Conceição Silva, A.; Antunes, O.A.C. Suzuki - Miyaura reactions in PEG-water solutions using Pd/BaSO4 as catalytic source. Appl. Organomet. Chem. 2009, 23, 5–8, doi:10.1002/aoc.1455.

Liew, K.F.; Chan, K.L.; Lee, C.Y. Blood-brain barrier permeable anticholinesterase aurones: Synthesis, structure-activity relationship, and drug-like properties. Eur. J. Med. Chem. 2015, 94, 195–210, doi:10.1016/j.ejmech.2015.02.055.

Yadav, Y.; MacLean, E.D.; Bhattacharyya, A.; Parmar, V.S.; Balzarini, J.; Barden, C.J.; Too, C.K.L.; Jha, A. Design, synthesis and bioevaluation of novel candidate selective estrogen receptor modulators. Eur. J. Med. Chem. 2011, 46, 3858–3866, doi:10.1016/j.ejmech.2011.05.054.

Soni, J.; Sahiba, N.; Sethiya, A.; Agarwal, S. Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq. 2020, 315, 113766, doi:10.1016/j.molliq.2020.113766.

Zhao, Y.; Li, D.; Zhao, L.; Zhang, J. A practical synthesis of 2-aroylindoles from N-(2-formylphenyl)trifluoro- acetamides in PEG-400. Synthesis (Stuttg). 2011, 873–880, doi:10.1055/s-0030-1258445.

da Silva, A.; Junior, J.M.; Batalini, C. Síntese e caracterização de derivados da L-fenilalanina e L-tirosina alinhada à “ Química Verde ” e avaliação da toxicidade Synthesis and characterization of L-phenylalanine and L-tyrosine derivatives in line with “ Green Chemistry ” a nd evaluation of to. Brazilian J. Dev. 2021, 7, 1614–1631, doi:10.34117/bjdv7n1-110.

Bruice, P.Y. Organic Chemistry; 2011; ISBN 0-321-69768-5.

De La Hoz, A.; Díaz-Ortiz, A.; Prieto, P. Microwave-assisted green organic synthesis. RSC Green Chem. 2016, 2016-Janua, 1–33, doi:10.1039/9781782623632-00001.

Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater. Today Nano 2020, 11, 100076, doi:10.1016/j.mtnano.2020.100076.

Van Walree, C.A.; Maarsman, A.W.; Marsman, A.W.; Flipse, M.C.; Jenneskens, L.W.; Smeets, W.J.J.; Spek, A.L. Electronic and second-order nonlinear optical properties of conformationally locked benzylideneanilines and biphenyls. The effect of conformation on the first hyperpolarizability. J. Chem. Soc. Perkin Trans. 2 1997, 809–819, doi:10.1039/a604609f.




DOI: https://doi.org/10.34117/bjdv7n6-577

Refbacks

  • There are currently no refbacks.