Microwave-assisted synthesis of a new fluorinated Biphenyl-Schiff base with potential application in nonlinear optical / Síntese assistida por micro-ondas de uma nova Bifenil-Base de Schiff Fluorada com potencial aplicação em óptica não linear

Authors

  • Daniela Corrêa Santos
  • Marcos Antonio de Abreu Lopes Junior
  • Diego Fernando da Silva Paschoal
  • Andréa Luzia Ferreira de Souza

DOI:

https://doi.org/10.34117/bjdv7n6-577

Keywords:

Schiff Base, Biphenyl, Nonlinear Optical Properties, First Hyperpolarizability, Suzuki-Miyaura, Microwave.

Abstract

The new fluorinated Biphenyl-Schiff Base 3 was synthesized by a synthetic route involving three steps, with the formation of two intermediates precursors. Primarily by the result of a Suzuki-Miyaura cross-coupling reaction forming the fluorinated 4-aminobiphenyl (1) and later by the result of the nucleophilic substitution SN2 obtaining the intermediate 4-[2-(dimethylamino)ethoxy]-benzaldehyde (2). The Schiff base 3 was obtained through the condensation reaction between intermediates 1 and 2. The methodology involving the reaction to form intermediate 2 proved to be more effective when aided by microwave irradiation providing a significantly higher yield in a shorter time. The GC-MS showed that all compounds were synthesized by the proximity of the calculated m/z ratio and that found. In addition, theoretical calculations showed that the new fluorinated Biphenyl-Schiff Base 3 obtained a value for the first hyperpolarizability ( of 45.1 x 10-30 esu that is approximately five times greater than the experimental value of 9.2 x 10-30 esu for the reference compound (p-nitroaniline).

References

Baldwin, G.C. An Introduction to Nonlinear Optics; 1st ed.; Plenum Publishing Corporation: New York, 1917; ISBN 9780306200045.

Papagni, A.; Maiorana, S.; Del Buttero, P.; Perdicchia, D.; Cariati, F.; Cariati, E.; Marcolli, W. Synthesis and spectroscopic and NLO properties of “push-pull” structures incorporating the inductive electron-withdrawing pentafluorophenyl group. European J. Org. Chem. 2002, 1, 1380–1384, doi:10.1002/1099-0690(200204)2002:8<1380::AID-EJOC1380>3.0.CO;2-D.

Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118–119, doi:10.1103/PhysRevLett.7.118.

Shi, R.; Han, X.; Xu, J.; Bu, X.H. Crystalline Porous Materials for Nonlinear Optics. Small 2021, 2006416, 1–16, doi:10.1002/smll.202006416.

Burland, D.M. Optical Nonlinearities in Chemistry: Introduction. Chem. Rev. 1994, 94, 1–2, doi:10.1021/cr00025a600.

Verbitskiy, E. V.; Achelle, S.; Bureš, F.; le Poul, P.; Barsella, A.; Kvashnin, Y.A.; Rusinov, G.L.; Guen, F.R. le; Chupakhin, O.N.; Charushin, V.N. Synthesis, photophysical and nonlinear optical properties of [1,2,5]oxadiazolo[3,4-b]pyrazine-based linear push-pull systems. J. Photochem. Photobiol. A Chem. 2021, 404, doi:10.1016/j.jphotochem.2020.112900.

Castet, F.; Gillet, A.; Bureš, F.; Plaquet, A.; Rodriguez, V.; Champagne, B. Second-order nonlinear optical properties of ?-shaped pyrazine derivatives. Dye. Pigment. 2021, 184, doi:10.1016/j.dyepig.2020.108850.

Undavalli, G.; Joseph, M.; K, A.K.; Philip, R.; Anand, B.; Rao, G.N. Tuning the nonlinear optical properties by engineering donor-acceptor configurations in nitrochalone derivatives. Opt. Mater. (Amst). 2021, 115, 111024, doi:10.1016/j.optmat.2021.111024.

Zhang, D.; Chen, W.; Zou, J.; Luo, J. Critical Role of Non-classical Intermolecular Hydrogen Bonding in Affecting the ??? Stacking and Nonlinear Optical Properties of Tricyanofuran-Based Push?Pull Heptamethines. Am. Chem. Soc. 2021, doi:10.1021/acs.chemmater.1c00704.

Amatore, C.; Jutand, A.; Negri, S.; Fauvarque, J.F. Efficient palladium-catalyzed synthesis of unsymmetrical donor-acceptor biaryls and polyaryls. J. Organomet. Chem. 1990, 390, 389–398, doi:10.1016/0022-328X(90)85107-A.

Ledoux, I.; Zyss, J.; Jutand, A.; Amatore, C. Nonlinear optical properties of asymmetric polyphenyls: Efficiency versus transparency trade-off. Chem. Phys. 1991, 150, 117–123, doi:10.1016/0301-0104(91)90061-W.

Dolbier, W.R. Fluorine chemistry at the millennium. J. Fluor. Chem. 2005, 126, 157–163, doi:10.1016/j.jfluchem.2004.09.033.

O’hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319, doi:10.1039/b711844a.

Adeel, M.; Khalid, M.; Ullah, M.A.; Muhammad, S.; Khan, M.U.; Tahir, M.N.; Khan, I.; Asghar, M.; Mughal, K.S. Exploration of CH?F & CF?H mediated supramolecular arrangements into fluorinated terphenyls and theoretical prediction of their third-order nonlinear optical response. RSC Adv. 2021, 11, 7766–7778, doi:10.1039/d0ra08528f.

Bai, S.; Wang, D.; Liu, H.; Wang, Y. Recent advances of oxyfluorides for nonlinear optical applications. Inorg. Chem. Front. 2021, 8, 1637–1654, doi:10.1039/d0qi01156h.

Silva, A. da C.; Senra, J.D.; Aguiar, L.C.S.; Simas, A.B.C.; Souza, A.L.F. d.; Malta, L.F.B.; Antunes, O.A.C. Ligand-free Suzuki-Miyaura reactions in PEG 300. Tetrahedron Lett. 2010, 51, 3883–3885, doi:10.1016/j.tetlet.2010.04.092.

De Souza, A.L.F.; Da Conceição Silva, A.; Antunes, O.A.C. Suzuki - Miyaura reactions in PEG-water solutions using Pd/BaSO4 as catalytic source. Appl. Organomet. Chem. 2009, 23, 5–8, doi:10.1002/aoc.1455.

Liew, K.F.; Chan, K.L.; Lee, C.Y. Blood-brain barrier permeable anticholinesterase aurones: Synthesis, structure-activity relationship, and drug-like properties. Eur. J. Med. Chem. 2015, 94, 195–210, doi:10.1016/j.ejmech.2015.02.055.

Yadav, Y.; MacLean, E.D.; Bhattacharyya, A.; Parmar, V.S.; Balzarini, J.; Barden, C.J.; Too, C.K.L.; Jha, A. Design, synthesis and bioevaluation of novel candidate selective estrogen receptor modulators. Eur. J. Med. Chem. 2011, 46, 3858–3866, doi:10.1016/j.ejmech.2011.05.054.

Soni, J.; Sahiba, N.; Sethiya, A.; Agarwal, S. Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq. 2020, 315, 113766, doi:10.1016/j.molliq.2020.113766.

Zhao, Y.; Li, D.; Zhao, L.; Zhang, J. A practical synthesis of 2-aroylindoles from N-(2-formylphenyl)trifluoro- acetamides in PEG-400. Synthesis (Stuttg). 2011, 873–880, doi:10.1055/s-0030-1258445.

da Silva, A.; Junior, J.M.; Batalini, C. Síntese e caracterização de derivados da L-fenilalanina e L-tirosina alinhada à “ Química Verde ” e avaliação da toxicidade Synthesis and characterization of L-phenylalanine and L-tyrosine derivatives in line with “ Green Chemistry ” a nd evaluation of to. Brazilian J. Dev. 2021, 7, 1614–1631, doi:10.34117/bjdv7n1-110.

Bruice, P.Y. Organic Chemistry; 2011; ISBN 0-321-69768-5.

De La Hoz, A.; Díaz-Ortiz, A.; Prieto, P. Microwave-assisted green organic synthesis. RSC Green Chem. 2016, 2016-Janua, 1–33, doi:10.1039/9781782623632-00001.

Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater. Today Nano 2020, 11, 100076, doi:10.1016/j.mtnano.2020.100076.

Van Walree, C.A.; Maarsman, A.W.; Marsman, A.W.; Flipse, M.C.; Jenneskens, L.W.; Smeets, W.J.J.; Spek, A.L. Electronic and second-order nonlinear optical properties of conformationally locked benzylideneanilines and biphenyls. The effect of conformation on the first hyperpolarizability. J. Chem. Soc. Perkin Trans. 2 1997, 809–819, doi:10.1039/a604609f.

Published

2021-06-24

How to Cite

Santos, D. C., Junior, M. A. de A. L., Paschoal, D. F. da S., & de Souza, A. L. F. (2021). Microwave-assisted synthesis of a new fluorinated Biphenyl-Schiff base with potential application in nonlinear optical / Síntese assistida por micro-ondas de uma nova Bifenil-Base de Schiff Fluorada com potencial aplicação em óptica não linear. Brazilian Journal of Development, 7(6), 62657–62669. https://doi.org/10.34117/bjdv7n6-577

Issue

Section

Original Papers