Microalgas e saúde: uma breve revisão / Microalgae and health: a short-review

Tatiele C. do Nascimento, Eduardo Jacob -Lopes, Leila Q .Zepka


Nos últimos anos tem se revelado uma tendência na busca de alimentos que apresentem, capacidades que vão além da nutrição básica. Nesse sentido a biomassa microalgal torna-se uma alternativa promissora.  Sua diversidade metabólica aliado ao seu elevado potencial biotecnológico permite a obtenção de diversos bioprodutos incluindo ácidos graxos, aminoácidos e carotenoides com atividades biológicas capazes de modular positivamente a saúde humana.  Em face disto, visando avançar o conhecimento científico sobre a aplicação desta biofonte como um alimento/ingrediente funcional essa revisão descreve os principais aspectos relacionados aos biocompostos produzidos por esses microrganismos bem como seu impacto em termos de saúde.


Microalgas, Biomassa, Bioprodutos, Ácidos Graxos, Aminoácidos, Carotenoides, Estrutura, Bioatividade, Antioxidante, Dislipidemia, Anti-Inflamatório.


Afify, A. E. M. M. R., Baroty, G. S. E., Baz, F. K. E., Baky, H. H. A. E., & Murad, S. A. (2018). Scenedesmus obliquus: Antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. Journal of Genetic Engineering and Biotechnology, 16(2), 399–408. https://doi.org/10.1016/j.jgeb.2018.01.002.

Agyei, D., Danquah, M. K., Sarethy, I. P., & Pan, S. (2015). Antioxidative peptides derived from food proteins. In: Rani, V., & Yadav, U. C. S., (eds.), Free Radicals in Human Health and Disease (p. 417–430). Springer, New Delhi.

Aladaileh, S. H., Khafaga, A. F., Abd El-Hack, M. E., Al-Gabri, N. A., Abukhalil, M. H., Alfwuaires M. A., Bin-Jumah, M., Alkahtani, S., Abdel-Daim, M. M., Aleya, L., & Abdelnour, S. (2020). Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti- inflammatory, and immune stimulatory properties. Science of The Total Environment, 701, 1–15.

Aldred, E., Buck, C., & Vall, K. (2009). Lipids. In: Aldred, E., Buck, C., & Vall (eds.), Pharmacology (p. 73–80). Churchill Livingstone, New York.

Barkia, I., & Saari, N. (2019). Microalgae for high-value products towards human health and nutrition. Mar. Drugs, 17(5), 304. doi: 10.3390/md17050304

Becker, E.W. (1984). Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass, 4(1), p.1–19.

Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), p. 207–210.

Becker, E.W. (2004). Microalgae in human and animal nutrition. In: RICHMOND, A. (Ed). Handbook of microalgal culture: biotechnology and applied phycology. London: Blackwell Science, p.312–351,

Bernaerts, T.M.M., Gheysen, L., Kyomugasho, C., Kermani, Z.J., Vandionant, S., Foubert, I., Hendrickx, M.E., Van Loey, A.M. (2018). Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 32, 150–161. doi:10.1016/j.algal.2018.03.017

Borowitzka, M. A. (2018). Microalgae in medicine and human health: a historical perspective. In: Levine, I., & Fleurence, J., (eds.), Microalgae in Health and Disease Prevention (pp. 195–210). Academic Press, Cambridge.

Chacon-Lee, T. L.; Gonzalez-Marino, G. E. (2010). Microalgae for “healthy” foods: possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), p. 655–675.

Chen, H., Zeng, F., Li, S., Liu, Y., Gong, S., Lv, X. -C., Zhang, J., & Liu, B. (2019). Spirulina active substance mediated gut microbes improve lipid metabolism in high-fat diet fed rats. Journal of Functional Foods, 59, 215–222. doi: https://doi.org/10.1016/j.jff.2019.04.049

Chen, K., & Roca, M. (2018). In vitro digestion of chlorophyll pigments from edible seaweeds. Journal of Functional Foods, , 40, 400–407. doi: https://doi.org/10.1016/j.jff.2017.11.030

Chen, Y., Xie, B., Yang, J., Chen, J., & Sun, Z. (2018). Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions. Food Chemistry, 240, 204–211. https:// doi.org/10.1016/j.foodchem.2017.06.067.

Colussi, G. et al. (2017). Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: Relevance for cardiovascular outcomes. Nutrition, Metabolism & Cardiovascular Diseases, 27, p.191–200.

Couch, S. C. et al. (2017). Associations between long chain polyunsaturated fatty acids and cardiovascular lipid risk factors in youth with type 1 diabetes: Search Nutrition Ancillary Study. Journal of Diabetes and its Complications, 31(1), p.67–73.

Delattre, C. et al. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34(7), 1159–1179.

Dvir, I., Moppes, D. v., & Arad, S. (2020). Foodomics: To discover the health potential of microalgae. In: Smithers, G., & Trinetta, V., (eds), Reference Module in Food Science (pp. 1–11). Elsevier, Oxford.

Egeland, E. S., Garrido, J. L., Clementson, L. Andresen, K., Thomas, C. S., Zapata, M., Airs, R., Llewellyn, C. A., Newman, J. L. & Rodríguez, S. R. (2011). Data sheets aiding identification of phytoplankton carotenes and chlorophylls. In: T. Roy, S., & Llewellyn, C. A., (eds.), Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography (pp. 655–822). Cambridge University Press, Cambridge.

Ejike, C. E. C. C. et al. (2017). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, p.30–36.

El-Baky, H. H. A. et al. (2002). Spirulina species as a source of carotenoids and a-tocopherol and its anticarcinoma factors. Biotechnology, 2, p.222–240.

El-Baz, F. K., Aly, H. F., & Abd-Alla, H. I. (2020). The ameliorating effect of carotenoid rich fraction extracted from Dunaliella salina microalga against inflammation- associated cardiac dysfunction in obese rats. Toxicology Reports,7, 118–124. doi: https://doi.org/10.1016/j.toxrep.2019.12.008

Enzing, C., Ploeg, M., Barbosa, M., Sijtsma, L., Vigani, M., Parisi, C., & Cerezo, E. R. (2014). Microalgae-based products for the food and feed sector: an outlook for Europe, https://publications.jrc.ec.europa.eu/repository/bitstream/JRC85709/final%20version%20online%20ipts%20jrc%2085709.pdf

Fanzo, J., Covic, N., Dobermann, A., Henson, S., Herrero, M., Pingali, P., & Staal, S. (2020). A research vision for food systems in the 2020s: Defying the status quo. Global Food Security, 26, 100397. doi: https://doi.org/10.1016/j.gfs.2020.100397

Fernandes, A. S., Nascimento, T. C. do, Jacob-Lopes, E., Rosso, V. V. De, & Zepka, L. Q. (2018). Introductory Chapter: Carotenoids - A brief overview on its structure, biosynthesis, synthesis, and applications. In: Zepka, L. Q., Jacob-Lopes, E., & De Rosso, V., (eds), Progress in Carotenoid Research (pp. 1–16). IntechOpen, London. doi:1 0.5772/intechopen.79542

Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2020). HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Current Research in Food Science, 3, 100–112. doi: https://doi.org/10.1016/j.crfs.2020.03.009

Fernandes, A.S, Nascimento, T. C., Nass, P. P., De Rosso, V. V., Menezes, C.R., Jacob-Lopes, E., & Zepka, L. Q. (2021). Insights on the intestinal absorption of chlorophyll series from microalgae. Food Research International, 140, 1–13. https://doi.org/10.1016/j.foodres.2020.110031

Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International, 99, 1036–1041. doi:https://doi.org/10.1016/j.foodres.2016.11.011.

Fernandes, A.S., Nascimento, T. C., Nass, P. P., Jacob-Lopes, E., & Zepka, L. Q. (2021). Determination of profile of chlorophyll compounds in microalgae species. Brazilian Journal of Development, 7(1), 4381–4399. doi: https://doi.org/10.34117/bjdv7n1-295

Fernandez, F. G. A., Sevilla, J. M. F., & Grima, E. M. (2017). Microalgae: The basis of mankind sustainability. In: Moya, M.,L., Gracia, M. D. S., & Mazadiego, L. F. Case Study of Innovative Projects - Successful Real Cases (pp. 123–140), IntechOpen, London. doi: 10.5772/67930

Fernández, L. C. Serra, J. D. Álvarez, J. R. M. Alberich, R. S. Jiménez, F. P. (2011). Dietary fats and cardiovascular health. Atención Primaria, 43, 1–16. doi: 10.1016/j.aprim.2010.12.003

Gaignard, C., Gargouch, N., Dubessay, P., Delattre, C., Pierre, G., Laroche, C., Fendri, I., Abdelkafi, S., & Michaud, P. (2019). New horizons in culture and valorization of red microalgae. Biotechnology Advances, 37(1), 193–222. doi: 10.1016/j.biotechadv.2018.11.014

García-Blanco, A., Baquero, M., Vento, M., Gil, E., Bataller, L., & Cháfer-Pericás, C. (2017). Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. Journal of the Neurological Sciences, 373(15), 295–302. doi: 10.1016/j.jns.2017.01.020

Gille, A., Hollenbach, R., Trautmann, A., Posten, C., & Briviba, K. (2019). Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum. Food Research International, 118, 40–48. https://doi.org/10.1016/j.foodres.2017.12.040

Gille, A., Trautmann, A., Posten, C., & Briviba, K. (2016). Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. International Journal of Food Sciences & Nutrition, 67(5), 507–513. https://doi.org/10.1080/ 09637486.2016.1181158

Gunstone, F. D. (2003). Fatty acids: Gamma-linolenic acid. In: Caballero, B., (ed.), Encyclopedia of Food Sciences and Nutrition (pp. 2308–2311). Academic Press, London. doi: https://doi.org/10.1016/B0-12-227055-X/00448-X

Haque, F., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2016). Intensified green production of astaxanthin from Haematococcus pluvialis. Food and Bioproducts Processing, 99, 1–11. doi: https://doi.org/10.1016/j.fbp.2016.03.002

Holban, A. M., & Grumezescu, A. M. (2018). Alternative and Replacement Foods (pp. 494). Academic Press, San Diego.

Jacob-Lopes, Zepka., L.Q, Pinto. A.A., & Queiroz, M.I. (2007). Characteristics of thin-layer drying of the cyanobacterium Aphanothece microscopica Nägeli. Chemical Engineering and Processing, 46, 63–69. doi: https://doi.org/10.1016/j.cep.2006.04.004

Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., & Zepka, L. Q. (2019). Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1–7. doi: https://doi.org/10.1016/j.cofs.2018.12.003

Jereosin, S. & Pumas, C. (2021). Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Frontiers in Bioengineering and Biotechnology, 9, 1–19. https://doi.org/10.3389/fbioe.2021.628597

Katayama, S.; Mine, Y. (2007). Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model. Journal of Agricultural and Food Chemistry, 55, 8458–8464.

Khalil, S. R., Elhady, W. M., Elewa, Y. H. A., Abd El-Hameed, N. E., & Ali, S. A. (2018). Possible role of Arthrospira platensis in reversing oxidative stress-mediated liver damage in rats exposed to lead. Biomedicine and Pharmacotherapy, 97, 1259–1268. doi: https://doi.org/10.1016/j.biopha.2017.11.045

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 1–21. doi: https://doi.org/10.1186/s12934-018-0879-x

Khayyal, M. T., El-Baz, F. K., Meselhy, M. R., Ali, G. H., & El-Hazek, R. M. (2019). Intestinal injury can be effectively prevented by Dunaliella salina in gamma irradiated rats. Heliyon, 5(5), 1–5. doi: https://doi.org/10.1016/j.heliyon.2019.e01814

Kim, M. Y., Cheong, S. H., Lee, J. H., Kim, M. J., Sok, D. E., & Kim, M. R. (2010). Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet. Journal of Medicinal Food, 13(2), 420–426. doi: 10.1089/jmf.2009.1215

Klejdus, B., Kopecký, J., Benešová, L., & Vacek, J. (2009). Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. Journal of Chromatography A, 1216(5), 763–771. doi: https://doi.org/10.1016/j.chroma.2008.11.096

Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty esters composition. The Journal of Energy and Environmental Science. 10, 1039–1054. doi: https://doi.org/10.1039/B903941D

Ko, S.C., Kim, D.; Jeon, Y.J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology, 50, 2294–2302. doi: https://doi.org/10.1016/j.fct.2012.04.022

Kopec, R. E., & Failla, M. L. (2018). Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. Journal of Food Composition and Analysis, 68, 16–30. https://doi.org/10.1016/j.jfca.2017.06.008

Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.-T., & Show, P.-L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24. doi: https://doi.org/10.1016/j.fshw.2019.03.001

Kumar, S. S., Devasagayam, T. P. A., Bhushan, B., Verma, N. C. (2001). Scavenging of reactive oxygen species by chlorophyllin: An ESR study. Free Radical Research, 35(5), 563–574. doi:10.1080/10715760100301571

Kusama, Y., et al. (2015). Zeaxanthin and Echinenone Protect the Repair of Photosystem II from Inhibition by Singlet Oxygen in Synechocystis sp. PCC 6803. Plant and Cell Physiology Advance Access, 1, 1–36. Doi: 10.1093/pcp/pcv018

Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and

sensorial attributes of the end products. Algal Research, 41, 101566. doi: https://doi.org/10.1016/j.algal.2019.101566

Lanfer-Marquez, U. M., Barros, R. M. C., Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38, 885–891

Li, L., Li, W., Kim, Y.-h., & Lee, Y. W. (2013). Chlorella vulgaris extract ameliorates carbon tetrachloride-induced acute hepatic injury in mice. Experimental and Toxicologic Pathology, 65(1), 73–80. doi: https://doi.org/10.1016/j.etp.2011.06.003

Lu, M., Zhang, X., Zheng, D., Jiang, X., & Chen, Q. (2014). Branched-chain amino acids supplementation protects streptozotocin-induced insulin secretion and the correlated mechanism. Biofactors, 41, 127–133. doi: 10.1002/biof.1188

Lupette, J., & Benning, C. (2020). Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie, 178, 5–25 doi: https://doi.org/10.1016/j.biochi.2020.04.022

Maroneze, M. M., Siqueira, S. F., Vendruscolo, R. G., Wagner, R., de Menezes, C. R., Zepka, L. Q., & Jacob-Lopes. (2016). The role of photoperiods on photobioreactors - A potential strategy to reduce costs. Bioresource Technology, 219, 493–499. doi: https://doi.org/10.1016/j.plaphy.2016.05.021.

Matos, Â. P. (2019). Microalgae as a potential source of proteins. In: Galanakis, C. M., (ed), Proteins: Sustainable Source, Processing and Applications. Academic Press, Cambridge. doi: https://doi.org/10.1016/b978-0-12-816695-6.00003-9

Matos, Â. P. (2017). The impact of microalgae in food science and technology. Journal of the American Oil Chemists’ Society, 94(11), 1333–1350. doi: https://doi.org/10.1007/s11746-017-3050-7

Mercadante, A. Z. (2008). Food colorants – chemical and functional properties. In: SOCACIU, C. (Ed.) Carotenoids in foods: sources and stability during processing and storage (p.213–235). New York: CRC Press.

Michaud, P. (2018). Polysaccharides from microalgae, what’s future? Advances in Biotechnology and Microbiology, 8(2), 1–2. doi: https://doi.org/10.19080/AIBM.2018.08.555732

Murthy, K. N. C., Vanitha, A., Rajesha, J., Swamy, M. M., Sowmya, P. R., & Ravishankar, G. A. (2005). In vivo antioxidant activity of carotenoids from Dunaliella salina - a green microalga. Life Sciences, 76(12), 1381–1390. doi: https://doi.org/10.1016/j.lfs.2004.10.015

Nörnberg, M. L., Nass, P. P., Nascimento, T. C., Fernandes, A. S., Jacob-Lopes, E., & Zepka, L. Q. (2021). Carotenoids profile of Desertifilum spp. in mixotrophic conditions. Brazilian Journal of Development, 7(3), 33017–33029. doi:10.34117/bjdv7n3-835

Novoveska, L., Michael E. Ross, Michele S. Stanley, Rémi Pradelles,Virginie Wasiolek & Jean-François Sassi. (2019). Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Marine Drugs, v.17, n.11, p.640. doi: 10.3390/md17110640

Perez-Garcia, O., Escalante, F.M.E., Bashan, L.E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1),11–36. doi: 10.1016/j.watres.2010.08.037

Pierre, G., Delattre, C., Dubessay, P., Jubeau, S., Vialleix, C., Cadoret, J.-P., Probert, I., & Michaud, P. (2019). What is in store for EPS microalgae in the next decade? Molecules, 24(23), 1–25. doi: https://doi.org/10.3390/molecules24234296

Poliak, P., Peter, Š., Klein, E., Luke, V. (2018). Thermodynamics of radical scavenging of symmetric carotenoids and their charged species. Food Chemistry, 268, 542–549. doi: https://doi.org/10.1016/j.foodchem.2018.06.063

Queiroz, M. I.; Jacob-Lopes, E.; Zepka, L. Q.; Bastos, R. G.; Goldbeck, R. (2007). The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, 98, 2163–2169. doi: https://doi.org/10.1016/j.biortech.2006.08.034

Queiroz, M.I., Bastos, R.G., Beneri, R.V., Almeida, R.V. (2002). Evaluación Del crecimiento de la Aphanothece microscopica Nägeli en las aguas residuales de la parbolizacion del arroz. Revista información Tecnológica, 1, 61–65.

Rao, A. R., Sarada, R., Shylaja, M. D., & Ravishankar, G. A. (2015). Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis. Journal of food science and technology, 52(10), 6703–6710. doi: 10.1007/s13197-015-1775-6

Raposo, M. F. D. J., Morais, R. M. S. C., & Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93(15), 479–486. doi: 10.1016/j.lfs.2013.08.002

Raposo, M. F. D. J., De Morais, A. M. M. B., & De Morais, R. M. S. C. (2014). Bioactivity and applications of polysaccharides from marine microalgae. In K. Ramawat, K. G., & Mérillon, J., -M., (Eds.), Polysaccharides (pp. 1–38), Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-03751-6

Raposo, M. F. D. J., De Morais, A. M. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967–3028. doi: https://doi.org/10.3390/md13052967

Raposo, M. F. D. J., De Morais, R. M. S. C. & De Morais, A. M. M. B. (2013). Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 11(1), 233–252. doi: https://doi.org/10.3390/md11010233

Roca, M., Chen, K., Pérez-Gálvez, A. (2015). Chlorophyll. In Encyclopedia of Food and Health (pp. 37–41). doi: https://doi.org/10.1016/B978-0-08-100371-8.00006-3

Rodrigues, D. B., Flores, É. M. M., Barin, J. S., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2014). Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Research International, 65, 144–148. https://doi.org/10. 1016/j.foodres.2014.06.037.

Rodrigues, D. B., Menezes, C. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2015). Bioactive pigments from microalgae Phormidium autumnale. Food Research International, 77, 273–279. https://doi.org/10.1016/j.foodres.2015.04.027

Rodrigues, E., Mariutti, L. R. B., Chisté, R. C., and Mercadante, A. Z. (2012). Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity : Application to carotenoids and structure-activity relationship. Food Chemistry, 135(3), 2103–2111. doi: https://doi.org/10.1016/j.foodchem.2012.06.074.

Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. Washington: ILSI Press, p.64.

Rodriguez-Amaya, D. B. (2015). Status of carotenoid analytical methods and in vitro assays for the assessment of food quality and health effects. Current Opinion in Food Science, 1, 56–63. doi: https://doi.org/10.1016/j.cofs.2014.11.005

Samuels, R., Mani, U.V., Iyer, U.M., Nayak, U.S. (2002). Hypocholesterolemic effect of Spirulina in patients with hyperlipidemic nephrotic syndrome. Journal of Medicinal Food, 5(2), 91–96. doi: 10.1089/109662002760178177

Santos, A. B., Fernandes, A.S., Wagner, R., Jacob-Lopes, E., & Zepka, L. Q. ( 2016). Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. Journal of Applied Phycology, 28(2), 1561–1570. doi: https://doi.org/10.1007/s10811-015-0740-0

Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58–72. doi: https://doi.org/10.1016/j.procbio.2020.05.025

Schmatz, D.A., Uebel, L.S., Kuntzler, S.G., Dora, C.L., Vieira Costa, J.A., Morais, M.G. (2016). Scaffolds containing Spirulina sp. Leb 18 biomass: development, characterization and evaluation of in vitro biodegradation. Journal of Nanoscience and Nanotechnology, 16(1), 1050–9. doi: 10.1166/jnn.2016.12331

Schwingshackl L. & Hoffmann, G. et al. (2012). Monounsaturated Fatty Acids and Risk of Cardiovascular Disease: Synopsis of the Evidence Available from Systematic Reviews and Meta-Analyses. Nutrients, 4(12),1989–2007. doi: 10.3390/nu4121989

Silva, M. E. T. d., Correa, K. d. P., Martins, M. A., da Matta, S. L. P., Martino, H. S. D., & Coimbra, J. S. d. R. (2020). Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. Journal of Functional Foods, 65, 103711. doi: https://doi.org/10.1016/j.jff.2019.103711

Singh, S. K., Kaur, R., Bansal, A., Kapur, S., & Sundaram, S. (2020). Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds. In: Verma, M., & Chandel, A., (eds.), Biotechnological Production of Bioactive Compounds (pp. 221–259). Elsevier, Oxford. doi: https://doi.org/10.1016/B978-0-444-64323-0.00008-4

Stahl, W. & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24(6), 345–51.doi: 10.1016/s0098-2997(03)00030-x

Steffens D, Lersch M, Rosa A, Scher C., Crestani T., Morais M. G., Costa J. A., Pranke P. (2013). A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. Journal of Biomedical Nanotechnology, 9, 710–718. doi: 10.1166/jbn.2013.1571

Tajiri, K. & Shimizu Y (2013). Branched-chain amino acids in liver diseases. World Journal Gastroenterology, 19(43), 7620–7629. doi: 10.3748/wjg.v19.i43.7620

Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 304, 122997. doi: https://doi.org/10.1016/j.biortech.2020.122997

Tsai, C.-F., Lu, F.-J., & Hsu, Y.-W. (2012). Protective effects of Dunaliella salina - a carotenoids-rich alga - against ultraviolet B-induced corneal oxidative damage in mice. Molecular vision, 18, 1540-1547.

Uauy, R., Hoffman, D.R., Mena, P., Llanos, A., & Birch, E.E. (2003). Children term studies of DHA and ARA supplementation on neurodevelopment: results of randomized clinical trials. Journal of Pediatrics, 143, 17–25. doi:10.1067/s0022-3476(03)00398-6

Vendruscolo, R. G., Facchi, M. M. X., Maroneze, M. M., Fagundes, M. B., Cichoski, A. J., Zepka, L. Q., Barin, J. S., Jacob-Lopes, E., & Wagner, R. (2018). Polar and non-polar intracellular compounds from microalgae: Methods of simultaneous extraction, gas chromatography determination and comparative analysis. Food Research International, 109, 204–212. https://doi.org/10.1016/j.ces.2017.12.001

Vendruscolo, R. G., Fagundes, M. B., Maroneze, M. M., do Nascimento, T. C., de Menezes, C. R., Barin, J. S., et al. (2019). Scenedesmus obliquus metabolomics: Effect of photoperiods and cell growth phases. Bioprocess and Biosystems Engineering, 42(5), 727–739.

Wang, P., Zhang, B., Zhang, H., He, Y., Ong, C. N., & Yang, J. (2019). Metabolites change of Scenedesmus obliquus exerted by AgNPs. Journal of Environmental Sciences, 76, 310–318. https://doi.org/10.1016/j.jes.2018.05.017.

Wang, W., Cang, L., Zhou, D. M., & Yu, Y. C. (2016). Exogenous amino acids increase antioxidant enzyme activities and tolerance of rice seedlings to cadmium stress. Environmental Progress & Sustainable Energy, 36(01), 155–161.

Weindl, I, Ost, M., Wiedmer, P., Schreiner, M., Neugart, S., Klopsch, R., Kühnho, H., Kloas, W., Henkel, I.H., Schlüteri, O., Bußleri, S., Bellingrath-Kimura, S.D.,Ma, H., Grunech, T., Rolinski, S., & Klaus, S. (2020). Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Global Food Security, 25, 100367.

Wen, Z. Y. & Chen, F. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21(4), 273–294.

Wijffels, R. H & Barbosa, M. J. (2010). An outlook on microalgal biofuels Science, 329, 796–799, 2010.

Wu, G., Fanzo, J., Miller, D.D., Pingali, P., Post, M., Steiner, J.L., & Thalacker-Mercer, A.E. (2014). Production and supply of high-quality food protein for human consumption: sustainability, challenge. Annals of the New York Academy of Sciences, 1321, 1–14. doi: 10.1111/nyas.12500

Xiong, J., Liu, S., Pan, Y., Zhang, B., Chen, X., & Fan, L. (2018). Combination of fish oil and ethanol extracts from Spirulina platensis inhibits the airway inflammation induced by ovalbumin in mice. Journal of Functional Foods,40, 707–714. doi: https://doi.org/10.1016/j.jff.2017.12.014

Yabuzaki, J. (2017). Carotenoids Database: Structures, chemical fingerprints and distribution among organisms. Database, (1), 1–11.

Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 26, 94–100. doi: https://doi.org/10.1016/j.cofs.2019.04.004

Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., Souza-Soares, L.A., & Queiroz, M.I. (2010). Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology, 101(18), p.7107–7111.doi: https://doi.org/10.1016/j.biortech.2010.04.001.

DOI: https://doi.org/10.34117/bjdv7n6-544


  • There are currently no refbacks.