In vitro microtomography evaluation of the implant-abutment interface - Gap microtomography evaluation/ Avaliação da microtomografia in vitro da interface implante-pilar - Avaliação da microtomografia de Gap

Thamiris Nogueira Sacker, Micheline Sandini Trentin, Thais Maria Pires dos Santos, Ricardo Tadeu Lopes, Elken Gomes Rivaldo

Abstract


Objectives: To evaluate in vitro the micromorphological differences of the prosthetic implant-abutment interface in two screw implant systems and a friction one.Materials and methods: Two screw implants (Group 1- Crossfit Internal Connection, Group 2- Tapered Internal Connection), a compressed friction implant (Group 3 - Frictional Connection), and their corresponding prosthetic components were used. The implants were individually fixed in an acrylic resin cylinder and the abutments were positioned with the torque recommended by the manufacturer and taken into a SkyScan 1173 microtomograph. In each implant-abutment image, the regions of interest evaluated were cervical area, abutment area, screw area, and abutment and screw area (G1-G2). In group 3, the cervical and abutment areas were measured. Statistical analysis was performed with ANOVA, Robust ANOVA, and Post Hoc Tukey’s test.Results: In the cervical region, only the samples from group 2 presented maladaptation (12.5 ± 7.0 µm). In the abutment area, the samples from groups 1 (159.6 ± 6.2 µm) and 2 (149.9 ± 9.1 µm) were statistically similar. In the screw area and the abutment and screw area, group 1 had a larger contact surface compared to group 2 but they were statistically similar.Conclusion: The samples from groups 1 and 3 did not present micro-spaces in the cervical third. Nevertheless, the samples from group 2 presented a mismatch in this region but within the acceptable limits found in the literature.


Keywords


dental implants, dental abutments, dental internal adaptation, X-ray microtomography.

Full Text:

PDF

References


Abbo B, Razzoog ME, Vivas J, Sierraalta M. (2008). Resistance to dislodgement of zirconia copings cemented onto titanium abutments of different heights. Journal of Prosthetic Dentistry, 99(1), 25-9. doi: 10.1016/S0022-3913(08)60005-0.

Abdelhamed MI, Galley JD, Bailey MT, Johnston WM, Holloway J, McGlumphy E, Leblebicioglu B. (2015). A comparison of zirconia and titanium abutments for microleakage. Clinical Implant Dentistry and Related Research, 17(2), 643-51. doi: 10.1111/cid.12301.

Binon PP, Weir DJ, Marshall SJ. Surface analysis of an original Branemark implant and three related clones. The International Journal of Oral & Maxillofacial Implants. 1992 Summer;7(2):168-75. PMID: 1398833

Broggini N, McManus L, Hermann JS, Medina R, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. (2003). Persistent acute inflammation at the implant-abutment interface. Journal of Dental Research, 82(3), 232-37. doi: 10.1177/154405910308200316.

Canullo L, Penarrocha-Oltra D, Soldini C, Mazzocco F, Penarrocha M, Covani U. (2015). Microbiological assessment of the implant abutment interface in different connections: cross-sectional study after 5 years of functional loading. Clin Oral Implants Res, 26(4), 426–34. doi: 10.1111/clr.12383.

Canullo L., Camacho AF, Tallarico M, Meloni SM, Xhanari Z. (2017). Mucosa thickness and peri-implant crestal bone stability. The International Journal of Oral and Maxillofacial Implants, 32(5), 675-6. doi: 10.11607/jomi.5349.

Cavusoglu Y, Akça K, Gürbüz R, Cehreli MC. (2014). A pilot study of joint stability at the zirconium or titanium abutment/titanium implant interface. The International Journal of Oral and Maxillofacial Implants, 29(2), 338–43. doi: 10.11607/jomi.3116.

Coppedê AR, Faria AC, de Mattos M. da G, Rodrigues RC, Shibli JA, Ribeiro RF. (2013). Mechanical comparison of experimental conical-head abutment screws with conventional flat-head abutment screws for external-hex and internal tri-channel implant connections: an in vitro evaluation of loosening torque. The International Journal of Oral & Maxillofacial Implants, 28(6), e321-9. doi: 10.11607/jomi.3029.

D’Ercole S, Tripodi D, Marzo G, Bernardi S, Continenza M A, Piattelli A, Iaculli F, Mummolo S. (2015). Microleakage of bacteria in different implant-abutment assemblies: an in vitro study. J Appl Biomater Funct Mater, 13(2), 174-80. doi: 10.5301/jabfm.5000214.

Dias Resende CC, Carolina Castro G, Pereira LM, Prudente MS, Zancopé K, Davi LR, Penatti MP, das Neves FD. (2015). Influence of the prosthetic index into Morse Taper implants on bacterial microleakage. Implant Dentistry, 24(5), 547-51. doi: 10.1097/ID.0000000000000284.

Dibart S, Warbington M, Su MF, Skobe Z. In vitro evaluation of the implant-abutment bacterial seal: thelocking taper system. The International Journal of Oral & Maxillofacial Implants. 2005 Sep-Oct;20(5):732-7. PMID: 16274147

do Nascimento C, Ikeda LN, Pita MS, Pedroso e Silva RC, Pedrazzi V, de Albuquerque RF, Ribeiro RF. (2015). Marginal fit and microbial leakage along the implant-abutment interface of fixed partial prostheses: An in vitro analysis using Checkerboard DNA-DNA hybridization. Journal of Prosthetic Dentistry,114(6), 831-38. doi: 10.1016/j.prosdent.2015.05.009.

do Nascimento C, Miani PK, Watanabe E, Pedrazzi V. In vitro evaluation of bacterial leakage along the implant-abutment interface of an external-hex implant after saliva incubation. The International Journal of Oral & Maxillofacial Implants. 2011 Jul-Aug;26(4):782-7. PMID: 21841988

Faria KO, Silveira-Junior CD, Silva-Neto JP, Mattos MGC, Silva MR, Neves FD. (2015). Comparison of methods to evaluate implant-abutment interface. Brazilian Journal of Oral Science, 12(1), 37-40. Doi: https://doi.org/10.20396/bjos.v12i1.8641139

Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. (1989). The direct examination of three-dimensional bone architecture in vitro by computed tomography. Journal of Bone and Mineral Research, 4(1), 3-11. doi: 10.1002/jbmr.5650040103.

Gigandet M, Bigolin G, Faoro F, Burgin W, Bragger U. (2014). Implants with original and non-original abutment connections. Clinical Implant Dentistry and Related Research, 16(2), 303-11. doi: 10.1111/j.1708-8208.2012.00479.x.

Giorgini G, Santangelo R, Bedini R, Pecci R, Manicone P F, Raffaelli L, Sanguinetti M, D’Addona A. Dimensional and microbiological in vitro analysis of a dental implant locking taper connection. Journal of Biological Regulators and Homeostatic Agents. 2013 Oct-Dec;27(4):1077-82. PMID: 24382190

Guerra E, Pereira C, Faria R, Jorge AO, Bottino MA, de Melo RM. (2016). The impact of conical and nonconical abutments on bacterial infiltration at the implant-abutment interface. The International Journal of Periodontics and Restorative Dentistry, 36(6), 825-31. doi: 10.11607/prd.2779.

Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. (2001). Biology width around one- and two-piece titanium implants. Clinical Implant Dentistry and Related Research, 12(6), 559-71. doi: 10.1034/j.1600-0501.2001.120603.x.

Jorn D, Kohorst P, Besdo S, Borschers L, Stiesch M. (2016). Three-dimensional nonlinear finite element analysis and microcomputed tomography evaluation of microgap formation in a dental implant under oblique loading. The International Journal of Oral and Maxillofacial Implants, 31(3),32-42. doi: 10.11607/jomi.4179.

Khorshidi H, Raoofi S, Moattari A, Bagheri, A, Kalantari MH. (2016). In vitro evaluation of bacterial leakage at implant-abutment connection: An 11-degree Morse Taper compared to a butt joint connection. International Journal of Biomaterials, 8527849. doi: 10.1155/2016/8527849.

Lakha T, Kheur M, Kheur S, Sandhu R. (2015). Bacterial colonization at implant-abutment interface: a systematic review. Journal of Dental Specialities, 3(2), 176-79. doi: 10.1016/j.jpor.2017.03.001.

Larrucea C, Conrado A, Olivares D, Padilla C, Barrera A, Lobos O. (2018). Bacterial microleakage at the abutment-implant interface, in vitro study. Clinical Implant Dentistry and Related Research, 20(3), 360-367. doi: 10.1111/cid.12589.

Lee Bo Ah, Hen Kim B, Kweon HHI. (2018). The prosthetic abutment height can affect marginal bone loss around dental implants. Clinical Implant Dentistry and Related Research, 20(5), 799-805. doi: 10.1111/cid.12648.

Maeda Y, Satoh R, Sogo M. (2006). In vitro differences of stress concentrations for internal and external heximplant-abutment connections: a short communication. Journal of Oral Rehabilitation, 33(1), 75-8. doi: 10.1111/j.1365-2842.2006.01545.x.

Mattheos N., Larsson C, Ma L, Fokas G, Chronopoulos V, Janda M. (2017). Micromorphological differences of the implant-abutment junction and in vitro load testing for three different titanium abutments on Straumann tissue level implants. Clinical Oral Implants Research, 28(12), 1523-1531. doi: 10.1111/clr.13021.

Meleo D, Baggi L, Di Girolamo M, Di Carlo F, Pecci R, Bedini R. (2012). Fixture-abutment connection surface and micro-gap measurements by 3D microtomographic technique analysis. Ann Ist SuperSanità, 48(1), 53-58. doi: 10.4415/ANN_12_01_09.

Michalakis K, Pissiotis AL, Kang K, Hirayama H, Garefis PD, Petridis H. The effect of thermal cycling and air abrasion on cement failure loads of 4 provisional luting agents used for the cementation of implant-supported fixed partial dentures. The International Journal of Oral & Maxillofacial Implants. 2007 Jul-Aug;22(4):569-74. PMID: 17929517

Mishra SK, Chowdhary R, Kumari S. (2017). Microleakage at the different implant abutment interface: a systematic review. Journal of Clinical and Diagnostic Research, 11(6), ZE10-ZE15. doi: 10.7860/JCDR/2017/28951.10054.

Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. (2003). Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. Journal of Periodontology, 74, 346–52. doi: 10.1902/jop.2003.74.3.346.

Pimenta MA, Frasca LC, Lopes R, Rivaldo E. (2015). Evaluation of marginal and internal fit of ceramic and metallic crown coping using x-ray microtomography (micro-CT) technology. Journal of Prosthetic Dentistry, 114(2), 223-28. doi: 10.1016/j.prosdent.2015.02.002.

Proof P, Steinmetz I, Bayerlein T, Dietze S, Fanghanel J, Gedrange T. Bacterial colonization of interior implant threads with and without sealing. Folia Morphologica. 2006 Feb;65(1):75-7. PMID: 16783744

Rezende CEE, Griggs JA, Duan Y, Mushashe AM, Nolasco GMC, Borges AFS, Rubo JH. (2015). An indirect method to measure abutment screw preload: a pilot study based on micro-CT scanning. Brazilian Dental Journal, 26(6), 596-601. doi: 10.1590/0103-6440201300274.

Rismanchian M, Hatami M, Badrian H. (2012). Evaluation of microgap size and microbial leakage in the connection area of 4 abutments with Straumann implant. Journal Oral Implantology, 38(6), 677-85. doi: 10.1563/AAID-JOI-D-11-00167.

Scarano A, Mortellaro C, Marigi L, Pecci R, Valbonetti L. (2016). Evaluation of microgap with three-dimensional x-ray microtomography: internal hexagon versus cone morse. Journal of Craniofacial Surgery, 27(3), 682-85. doi: 10.1097/SCS.0000000000002563.

Schicho K, Kastner J, Klingesberger R, Seemann R, Enislidis G, Undt G, Wanschitz F, Figl M, Wagner A, Ewers R. (2007). Surface area analysis of dental implants using micro-computed tomography. Clinical Oral Implants Research, 18(4), 459-64. doi: 10.1111/j.1600-0501.2007.01338.x.

Simon RL. Single implant-supported molar and premolar crowns: a ten-year retrospective clinical report. (2003). Journal of Prosthetic Dentistry,90(6), 517–21. doi: 10.1016/j.prosdent.2003.08.025.

Tripodi D, Vantaggiato G, Scarano A, Perrotti V, Piatelli A, Iezzi G, D’Ercole S. (2012). An in vitro investigation concerning the bacterial leakage at implants with internal hexagon and morse taper implant-abutment connections. Implant Dentistry, 21(4), 335-39. doi: 10.1097/ID.0b013e31825cd472.

Vidigal GM Jr, NovaesA Jr, Chevitarese O, de Avillez RR, Groisman M. Evaluation of the implant-connection interface using scanning electron microscopy. Brazilian Dental Journal. 1995;6(1):17-23. PMID: 8688644




DOI: https://doi.org/10.34117/bjdv7n6-249

Refbacks

  • There are currently no refbacks.