Performance of Fenton process for the removal of recalcitrant organics from landfill leachate after nitrification / Desempenho do processo Fenton para remoção de orgânicos recalcitrantes de lixiviado do aterro sanitário após a nitrificação

Caio Victor Lourenço Rodrigues, Rodrigo Rossetto Pescim, Deize Dias Lopes


The Fenton's process was evaluated for mature leachate treatment, after the biological one, by means of an experimental design divided into three steps: analyzes of the factors separately to establish values ranges; evaluation of significant factors and their interactions by a fractional factorial design; and analyzes of factors by a Central Composite Design (CCD). Performance results were measured by removal efficiency of the chemical organic demand (COD) and color. Four factors were considered: [H2O2], [H2O2]/[Fe2+], pH, and addition mode of reagents. The removal achieved were 88 (COD) and 99% (color) for: [H2O2] = 480 mM (6.02 mg H2O2 mgCOD-1); [H2O2]/[Fe2+] =6 (1.65 mg Fe2+ mgCOD-1); pH=3.5, and reagents dosages divided into three stages. For the range evaluated, the [H2O2] had the greatest influence in the COD and color removal. The models established for COD and color removal were able to explain 86.7 and 80.3% of the variance around the average. Alkalinity concentration and the characteristics of the leachate used may interfere in the Fenton efficiency, so should be the focus of further research. The addition of the reagents shared in fractions was not significant in the treatment, however, it is recommended for system operation, avoiding foam formation. In the biological treatment for nitrogen removal from landfill leachate, there is high alkalinity consumption, therefore, when one used before Fenton's process, it helps to reduce the pH. This and the possibility of applying Fenton's process at circum-neutral initial pH demonstrates the potential of association these technologies for the treatment of landfill leachate.



Landfill Leachate, Advanced Oxidation Processes (AOP), Fenton´s Reagent, Alkalinity, Central Composite Design (CCD).


J. B. Christensen, D. L. Jensen, C. GrØn, Z. Filip, and T. H. Christensen, “Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater,” Water Res., vol. 32, no. 1, pp. 125–135, 1998, doi: 10.1016/S0043-1354(97)00202-9.

K. H. Kang, H. S. Shin, and H. Park, “Characterization of humic substances present in landfill leachates with different landfill ages and its implications,” Water Res., vol. 36, no. 16, pp. 4023–4032, 2002, doi: 10.1016/S0043-1354(02)00114-8.

P. Kjeldsen, M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen, “Present and Long-Term Composition of MSW Landfill Leachate: A Review,” Crit. Rev. Environ. Sci. Technol., vol. 32, no. 4, pp. 297–336, Oct. 2002, doi: 10.1080/10643380290813462.

Z. Liu, W. Wu, P. Shi, J. Guo, and J. Cheng, “Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation,” Waste Manag., vol. 41, pp. 111–118, 2015, doi: 10.1016/j.wasman.2015.03.044.

Y. Wu, S. Zhou, X. Ye, D. Chen, K. Zheng, and F. Qin, “Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology,” Process Saf. Environ. Prot., vol. 89, no. 2, pp. 112–120, 2011, doi: 10.1016/j.psep.2010.10.005.

A. Matilainen and M. Sillanpää, “Removal of natural organic matter from drinking water by advanced oxidation processes,” Chemosphere, vol. 80, no. 4, pp. 351–365, 2010, doi: 10.1016/j.chemosphere.2010.04.067.

R. Sadiq and M. J. Rodriguez, “Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review,” Sci. Total Environ., vol. 321, no. 1–3, pp. 21–46, 2004, doi: 10.1016/j.scitotenv.2003.05.001.

R. Dewil, D. Mantzavinos, I. Poulios, and M. A. Rodrigo, “New perspectives for Advanced Oxidation Processes,” J. Environ. Manage., vol. 195, pp. 93–99, 2017, doi: 10.1016/j.jenvman.2017.04.010.

J. Gao et al., “The present status of landfill leachate treatment and its development trend from a technological point of view,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 1, pp. 93–122, 2014, doi: 10.1007/s11157-014-9349-z.

P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions,” Adv. Environ. Res., vol. 8, no. 3–4, pp. 501–551, 2004, doi: 10.1016/S1093-0191(03)00032-7.

C. P. Huang, C. Dong, and Z. Tang, “Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment,” Waste Manag., vol. 13, no. 5–7, pp. 361–377, Jan. 1993, doi: 10.1016/0956-053X(93)90070-D.

M. A. Kamaruddin, M. S. Yusoff, H. A. Aziz, and Y.-T. Hung, “Sustainable treatment of landfill leachate,” Appl. Water Sci., vol. 5, no. 2, pp. 113–126, 2015, doi: 10.1007/s13201-014-0177-7.

T. A. Kurniawan, W. hung Lo, and G. Y. S. Chan, “Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate,” Chem. Eng. J., vol. 125, no. 1, pp. 35–57, 2006, doi: 10.1016/j.cej.2006.07.006.

M. A. Oturan and J. J. Aaron, “Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review,” Crit. Rev. Environ. Sci. Technol., vol. 44, no. 23, pp. 2577–2641, 2014, doi: 10.1080/10643389.2013.829765.

S. Rahim Pouran, A. R. Abdul Aziz, and W. M. A. Wan Daud, “Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters,” J. Ind. Eng. Chem., vol. 21, pp. 53–69, 2015, doi: 10.1016/j.jiec.2014.05.005.

Q. Xu, G. Siracusa, S. Di Gregorio, and Q. Yuan, “COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs),” Process Saf. Environ. Prot., vol. 120, pp. 278–285, 2018, doi: 10.1016/j.psep.2018.09.014.

A. Babuponnusami and K. Muthukumar, “A review on Fenton and improvements to the Fenton process for wastewater treatment,” J. Environ. Chem. Eng., vol. 2, no. 1, pp. 557–572, 2014, doi: 10.1016/j.jece.2013.10.011.

F. Gozzo, “Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates,” J. Mol. Catal. A Chem., vol. 171, no. 1–2, pp. 1–22, 2001, doi: 10.1016/S1381-1169(01)00099-1.

E. Neyens and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” J. Hazard. Mater., vol. 98, no. 1–3, pp. 33–50, 2003, doi: 10.1016/S0304-3894(02)00282-0.

J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Crit. Rev. Environ. Sci. Technol., vol. 36, no. 1, pp. 1–84, 2006, doi: 10.1080/10643380500326564.

C. Walling, “Fenton’s Reagent Revisited,” Acc. Chem. Res., vol. 8, no. 4, pp. 125–131, 1975, doi: 10.1021/ar50088a003.

C. C. Winterbourn, “Toxicity of iron and hydrogen peroxide: the Fenton reaction,” Toxicol. Lett., vol. 82–83, no. C, pp. 969–974, 1995, doi: 10.1016/0378-4274(95)03532-X.

J. A. R. J. J. Bautista, P; Mohedano A F; Casas J A; Zazo, “An overview of the application of Fenton oxidation to industrial wastewaters treatment,” J. Chem. Technol. Biotechnol., vol. 83, pp. 1323–1338, 2008, doi: 10.1002/jctb.1988.

A. R. Abood, J. Bao, J. Du, D. Zheng, and Y. Luo, “Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration,” Waste Manag., vol. 34, no. 2, pp. 439–447, 2014, doi: 10.1016/j.wasman.2013.10.025.

Y. Deng and J. D. Englehardt, “Treatment of landfill leachate by the Fenton process,” Water Res., vol. 40, no. 20, pp. 3683–3694, 2006, doi: 10.1016/j.watres.2006.08.009.

A. Gupta, R. Zhao, J. T. Novak, and C. Douglas Goldsmith, “Application of Fenton’s reagent as a polishing step for removal of UV quenching organic constituents in biologically treated landfill leachates,” Chemosphere, vol. 105, pp. 82–86, 2014, doi: 10.1016/j.chemosphere.2013.12.066.

S. Ismail and A. Tawfik, “Performance of passive aerated immobilized biomass reactor coupled with Fenton process for treatment of landfill leachate,” Int. Biodeterior. Biodegrad., vol. 111, pp. 22–30, 2016, doi: 10.1016/j.ibiod.2016.04.010.

E. Kattel, M. Trapido, and N. Dulova, “Treatment of landfill leachate by continuously reused ferric oxyhydroxide sludge-activated hydrogen peroxide,” Chem. Eng. J., vol. 304, pp. 646–654, 2016, doi: 10.1016/j.cej.2016.06.135.

J. Kochany and E. Lipczynska-Kochany, “Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation-A comparative study,” J. Hazard. Mater., vol. 166, no. 1, pp. 248–254, 2009, doi: 10.1016/j.jhazmat.2008.11.017.

V. Oloibiri, M. Chys, S. De Wandel, K. Demeestere, and S. W. H. Van Hulle, “Removal of organic matter and ammonium from landfill leachate through different scenarios: Operational cost evaluation in a full-scale case study of a Flemish landfill,” J. Environ. Manage., vol. 203, pp. 774–781, 2017, doi: 10.1016/j.jenvman.2016.09.055.

T. F. C. V. Silva et al., “An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale,” Sci. Total Environ., vol. 576, pp. 99–117, 2017, doi: 10.1016/j.scitotenv.2016.10.058.

M. Umar, H. A. Aziz, and M. S. Yusoff, “Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate,” Waste Manag., vol. 30, no. 11, pp. 2113–2121, 2010, doi: 10.1016/j.wasman.2010.07.003.

J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, and J. V. Weber, “Landfill leachate treatment methods: A review,” Environ. Chem. Lett., vol. 4, no. 1, pp. 51–61, 2006, doi: 10.1007/s10311-005-0016-z.

Y. Deng, “Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate,” J. Hazard. Mater., vol. 146, no. 1–2, pp. 334–340, 2007, doi: 10.1016/j.jhazmat.2006.12.026.

H. Zhang, J. C. Heung, and C. P. Huang, “Optimization of Fenton process for the treatment of landfill leachate,” J. Hazard. Mater., vol. 125, no. 1–3, pp. 166–174, 2005, doi: 10.1016/j.jhazmat.2005.05.025.

Y. W. Kang and K. Y. Hwang, “Effects of reaction conditions on the oxidation efficiency in the Fenton process,” Water Res., vol. 34, no. 10, pp. 2786–2790, 2000, doi: 10.1016/S0043-1354(99)00388-7.

A. Lopez, M. Pagano, A. Volpe, and A. C. Di Pinto, “Fenton’s pre-treatment of mature landfill leachate,” Chemosphere, vol. 54, no. 7, pp. 1005–1010, 2004, doi: 10.1016/j.chemosphere.2003.09.015.

S. K. Singh and W. Z. Tang, “Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment,” Waste Manag., vol. 33, no. 1, pp. 81–88, 2013, doi: 10.1016/j.wasman.2012.08.005.

M. I. Badawy, F. El-Gohary, T. A. Gad-Allah, and M. E. M. Ali, “Treatment of landfill leachate by Fenton process: Parametric and kinetic studies,” Desalin. Water Treat., vol. 51, no. 37–39, pp. 7323–7330, 2013, doi: 10.1080/19443994.2013.778795.

Y. Wu, S. Zhou, F. Qin, X. Ye, and K. Zheng, “Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM),” J. Hazard. Mater., vol. 180, no. 1–3, pp. 456–465, 2010, doi: 10.1016/j.jhazmat.2010.04.052.

Y. Wu, S. Zhou, F. Qin, H. Peng, Y. Lai, and Y. Lin, “Removal of humic substances from landfill leachate by Fenton oxidation and coagulation,” Process Saf. Environ. Prot., vol. 88, no. 4, pp. 276–284, 2010, doi: 10.1016/j.psep.2010.03.002.

I. Oller, S. Malato, and J. A. Sánchez-Pérez, “Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review,” Sci. Total Environ., vol. 409, no. 20, pp. 4141–4166, 2011, doi: 10.1016/j.scitotenv.2010.08.061.

S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin, “Landfill leachate treatment: Review and opportunity,” J. Hazard. Mater., vol. 150, no. 3, pp. 468–493, 2008, doi: 10.1016/j.jhazmat.2007.09.077.

F. Wang, D. W. Smith, and M. G. El-Din, “Application of advanced oxidation methods for landfill leachate treatment – A review,” J. Environ. Eng. Sci., vol. 2, no. 6, pp. 413–427, 2003, doi: 10.1139/s03-058.

A. Amiri and M. R. Sabour, “Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment,” Waste Manag., vol. 34, no. 12, pp. 2528–2536, 2014, doi: 10.1016/j.wasman.2014.08.010.

N. Biglarijoo, S. A. Mirbagheri, M. Bagheri, and M. Ehteshami, “Assessment of effective parameters in landfill leachate treatment and optimization of the process using neural network, genetic algorithm and response surface methodology,” Process Saf. Environ. Prot., vol. 106, pp. 89–103, 2017, doi: 10.1016/j.psep.2016.12.006.

N. Kishimoto, T. Kitamura, M. Kato, and H. Otsu, “Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system,” Water Res., vol. 47, no. 5, pp. 1919–1927, 2013, doi: 10.1016/j.watres.2013.01.021.

W. G. Moravia, M. C. S. Amaral, and L. C. Lange, “Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system,” Waste Manag., vol. 33, no. 1, pp. 89–101, 2013, doi: 10.1016/j.wasman.2012.08.009.

M. R. Sabour and A. Amiri, “Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate,” Waste Manag., vol. 65, pp. 54–62, 2017, doi: 10.1016/j.wasman.2017.03.048.

H. Zhang et al., “Reuse of Fenton sludge as an iron source for NiFe2O4synthesis and its application in the Fenton-based process,” J. Environ. Sci. (China), vol. 53, pp. 1–8, 2017, doi: 10.1016/j.jes.2016.05.010.

S. M. Iskander, J. T. Novak, and Z. He, “Reduction of reagent requirements and sludge generation in Fenton’s oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery,” Water Res., vol. 151, pp. 310–317, 2019, doi: 10.1016/j.watres.2018.11.089.

E. G. Garrido-Ramírez, B. K. G. Theng, and M. L. Mora, “Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review,” Appl. Clay Sci., vol. 47, no. 3–4, pp. 182–192, 2010, doi: 10.1016/j.clay.2009.11.044.

H. Li, S. Zhou, Y. Sun, and J. Lv, “Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent,” Waste Manag., vol. 30, no. 11, pp. 2122–2129, 2010, doi: 10.1016/j.wasman.2010.03.036.

D. Hermosilla, M. Cortijo, and C. P. Huang, “Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes,” Sci. Total Environ., vol. 407, no. 11, pp. 3473–3481, 2009, doi: 10.1016/j.scitotenv.2009.02.009.

S. Mohajeri, H. A. Aziz, M. H. Isa, M. A. Zahed, and M. N. Adlan, “Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique,” J. Hazard. Mater., vol. 176, no. 1–3, pp. 749–758, 2010, doi: 10.1016/j.jhazmat.2009.11.099.

P. H. Nakhate, H. G. Patil, and K. V. Marathe, “Intensification of landfill leachate treatment by advanced Fenton process using classical and statistical approach,” Chem. Eng. Process. - Process Intensif., vol. 133, no. June, pp. 148–159, 2018, doi: 10.1016/j.cep.2018.10.004.

M. Santin-Gusman, J. Moreno-Andrés, M. Cisneros-Abad, and S. Aguilar-Ramírez, “Optimization for Fenton Process in Removal of COD for Landfill Leachate Treatment,” Int. J. Environ. Sci. Dev., vol. 6, no. 12, pp. 920–924, 2015, doi: 10.7763/ijesd.2015.v6.722.

R. Subramaniam et al., “Application of Response Surface Methodology for Optimization of Treatment for an Aged Landfill Leachate Using Fenton’s Oxidation Reagent,” Environ. Eng. Sci., vol. 34, no. 10, pp. 731–739, 2017, doi: 10.1089/ees.2016.0613.

H. Zhang, H. J. Choi, P. Canazo, and C. P. Huang, “Multivariate approach to the Fenton process for the treatment of landfill leachate,” J. Hazard. Mater., vol. 161, no. 2–3, pp. 1306–1312, 2009, doi: 10.1016/j.jhazmat.2008.04.126.

Instituto Agronômico do Paraná, “Agrometeorologia Dados diários de Londrina 2016,” 2016. .

W. APHA, AWWA, Standard methods for the examination of water and wastewater, 20th edn. Washington: American Public Health Association, American Water Works Association, Water Pollution Control Federation, 2005.

D. A. Cataldo, M. Maroon, L. E. Schrader, and V. L. Youngs, “Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid,” Commun. Soil Sci. Plant Anal., vol. 6, no. 1, pp. 71–80, Jan. 1975, doi: 10.1080/00103627509366547.

R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of H2O 2 in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, no. 1, pp. 86–91, 2005, doi: 10.1016/j.talanta.2004.10.001.

J. Koc-Jurczyk and L. Jurczyk, “The efficiency of landfill leachate treatment using the Fenton’s reagent,” J. Ecol. Eng., vol. 16, no. 3, pp. 70–76, 2015, doi: 10.12911/22998993/2932.

Ł. Jurczyk and J. Koc-Jurczyk, “Quantitative dynamics of ammonia-oxidizers during biological stabilization of municipal landfill leachate pretreated by Fenton’s reagent at neutral pH,” Waste Manag., vol. 63, pp. 310–326, 2017, doi: 10.1016/j.wasman.2017.01.028.

S. M. Kim and A. Vogelpohl, “Degradation of Organic Pollutants by the Photo-Fenton-Process,” Chem. Eng. Technol., vol. 21, no. 2, pp. 187–191, 1998, doi: 10.1002/(SICI)1521-4125(199802)21:2<187::AID-CEAT187>3.0.CO;2-H.

F. J. Rivas, F. Beltrán, O. Gimeno, and F. Carvalho, “Fenton-like oxidation of landfill leachate,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 38, no. 2, pp. 371–379, 2003, doi: 10.1081/ESE-120016901.

J. Liu et al., “Selective removal of nitroaromatic compounds from wastewater in an integrated zero valent iron (ZVI) reduction and ZVI/H2O2 oxidation process,” RSC Adv., vol. 5, no. 71, pp. 57444–57452, 2015, doi: 10.1039/c5ra08487c.

R. C. Martins, D. V. Lopes, M. J. Quina, and R. M. Quinta-Ferreira, “Treatment improvement of urban landfill leachates by Fenton-like process using ZVI,” Chem. Eng. J., vol. 192, pp. 219–225, 2012, doi: 10.1016/j.cej.2012.03.053.

I. Mikhailov, S. Komarov, V. Levina, A. Gusev, J. P. Issi, and D. Kuznetsov, “Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge,” J. Hazard. Mater., vol. 321, pp. 557–565, 2017, doi: 10.1016/j.jhazmat.2016.09.046.

S. Q. Liu, L. R. Feng, N. Xu, Z. G. Chen, and X. M. Wang, “Magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in the presence of oxalic acid,” Chem. Eng. J., vol. 203, pp. 432–439, 2012, doi: 10.1016/j.cej.2012.07.071.

S. Navalon, M. Alvaro, and H. Garcia, “Heterogeneous Fenton catalysts based on clays, silicas and zeolites,” Appl. Catal. B Environ., vol. 99, no. 1–2, pp. 1–26, 2010, doi: 10.1016/j.apcatb.2010.07.006.

J. Bolobajev et al., “Reuse of ferric sludge as an iron source for the Fenton-based process in wastewater treatment,” Chem. Eng. J., vol. 255, pp. 8–13, 2014, doi: 10.1016/j.cej.2014.06.018.

T. F. C. V. Silva et al., “Sanitary landfill leachate treatment using combined solar photo-Fenton and biological oxidation processes at pre-industrial scale,” Chem. Eng. J., vol. 228, pp. 850–866, 2013, doi: 10.1016/j.cej.2013.05.060.

Y. Li, X. Shi, M. Yang, and L. Liang, “Variable selection in data envelopment analysis via Akaike ’ s information criteria,” Ann. Oper. Res., vol. 253, no. 1, pp. 453–476, 2017, doi: 10.1007/s10479-016-2382-2.

Y. Deng, E. Rosario-muniz, and X. Ma, “Effects of inorganic anions on Fenton oxidation of organic species in landfill leachate,” 2012, doi: 10.1177/0734242X10378185.



  • There are currently no refbacks.