Study of the volatile profile of the microalgal biomass of Chlorella vulgaris / Estudo do perfil volátil da biomassa microalgal de Chlorella vulgaris

Álisson Santos de Oliveira, Karem Rodrigues Vieira, Pricila Nass Pinheiro, Patrícia Acosta Caetano, Roger Wagner, Eduardo Jacob Lopes, Leila Queiroz Zepka

Abstract


Microalgae show significant potential to become a new crop that could significantly impact the world's need for food in the 21st Century. In spite of their potential as a food ingredient, microalgae need social acceptance as food. Sensory traits, such as aroma, are key factors for humans to accept microalgae as part of their diet. Thus, the objective of the study was to characterize volatile organic compounds with an aroma descriptor of the microalgal biomass of Chlorella Vulgaris. The volatile compounds were isolated by solid-phase microextraction applied in the headspace, separated by gas chromatography, and identified by mass spectrometry (HS-SPME-GC/MS). The results showed that hexanal, oct-3-en-2-ol, and pentanal were identified as the most plentiful volatiles in Chlorella Vulgaris biomass.


Keywords


Microalgae show significant potential to become a new crop that could significantly impact the world's need for food in the 21st Century. In spite of their potential as a food ingredient, microalgae need social acceptance as food. Sensory traits, such as

References


ACRE, T.,T. HEINRICH. A. Flavornet and human odor space. (2017). Available at: http://www.flavornet.org/f_kovats. html/(Accessed on 30 november 2020).

ANDREOU, A., BRODHUN, F., & FEUSSNER, I. (2009). Biosynthesis of oxylipins in non mammals. Progress in lipid research, 48(3-4), 148-170.< https://pubmed.ncbi.nlm.nih.gov/19268690/>

BHATTACHARYA, M., & GOSWAMI, S. (2020). Microalgae–A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology,101580.

CHINNASAMY, S., BHATNAGAR, A., HUNT, R. W., & DAS, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource technology, 101(9), 3097-3105. < https://www.sciencedirect.com/science/article/abs/pii/S096085240901654X>

CHISTI, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.< https://www.sciencedirect.com/science/article/abs/pii/S0734975007000262>

COLLA, ELIANE (2020). Handbook of Algal Science, Technology and Medicine || Microalgae: A new and promising source of food., 507-518.

CÓRDOVA, O., RUIZ-FILIPPI, G., FERMOSO, F. G., & CHAMY, R. (2018). Influence of growth kinetics of microalgal cultures on biogas production. Renewable Energy, 122,455459.

DEPRÁ, M. C., DOS SANTOS, A. M., SEVERO, I. A., SANTOS, A. B., ZEPKA, L. Q., & JACOB-LOPES, E. (2018). Microalgal biorefineries for bioenergy production: can we move from concept to industrial reality? BioEnergy Research, 11(4), 727-747. < https://link.springer.com/article/10.1007/s12155-018-9934-z>

DONADIO, C., BIALECKI, A., VALLA, A., & DUFOSSÉ, L. (2011). Carotenoid-derived aroma compounds detected and identified in brines and speciality sea salts (fleur de sel) produced in solar salterns from Saint-Armel (France). Journal of Food Composition and Analysis, 24(6), 801-810. < https://www.sciencedirect.com/science/article/abs/pii/S0889157511000792>

DUDAREVA N,KLEMPIEN A, MUHLEMANN JK, KAPLAN I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198:16–32. < https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12145>

DURME, J. V., GOIRIS, K., WINNE, A., DE COOMAN, L. AND MUYLAERT, K. (2013). Evaluation of the volatile composition and sensory properties of five species of microalgae. Journal of Agricultural and Food Chemistry. 61: 10881-10890. < https://pubmed.ncbi.nlm.nih.gov/24138670/>

GLOVER, K. E., BUDGE, S., ROSE, M., RUPASINGHE, H. P. V., MACLAREN, L., GREEN-JOHNSON, J., & FREDEEN, A. H. (2012). Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. Journal of dairy science, 95(6), 2797-2809. < https://pubmed.ncbi.nlm.nih.gov/22612917/>

HOSOGLU, M. I. (2018). Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food chemistry, 240, 1210-1218. < https://www.sciencedirect.com/science/article/abs/pii/S0308814617313882>

JACOB-LOPES, E. AND FRANCO, T. T. (2013). From oil refinery to microalgal biorefinery. Journal of CO2 Utilization. 2: 1-7. < https://www.sciencedirect.com/science/article/abs/pii/S2212982013000218>

JACOB-LOPES, E., SCOPARO, C. H. G., QUEIROZ, M. I. AND FRANCO, T. T. (2010). Biotransformations of carbon dioxide in photobiorreactors. Energy Conversion and Management, 51: 894-900. < https://www.sciencedirect.com/science/article/abs/pii/S0196890409004774>

JERKOVIĆ, I., MARIJANOVIĆ, Z., ROJE, M., KÚS, P. M., JOKIĆ, S. AND ČOŽ-RAKOVAC, R. (2018). Phytochemical study of the headspace volatile organic compounds of fresh algae and seagrass from the Adriatic Sea (single point collection). Plos One. 13(5): e0196462. < https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196462>

KEBEDE, B. T., GRAUWET, T., MAGPUSAO, J., PALMERS, S., MICHIELS, C., HENDRICKX, M., & VAN LOEY, A. (2015). An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree. Food chemistry, 179, 94-102. < https://www.sciencedirect.com/science/article/abs/pii/S030881461500076X>

KOST, C., & HEIL, M. (2008). The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. Journal of chemical ecology, 34(1), 2-13. < https://www.sciencedirect.com/science/article/abs/pii/S030881461500076X>

LEE, E., JALALIZADEH, M., & ZHANG, Q. (2015). Growth kinetic models for microalgae cultivation: a review. Algal Research, 12, 497-512. < https://www.sciencedirect.com/science/article/abs/pii/S2211926415300783>

LUKIN, I., MERZ, J., & SCHEMBECKER, G. (2018). Techniques for the recovery of volatile aroma compounds from biochemical broth: A review. Flavour and fragrance journal, 33(3), 203-216. < https://onlinelibrary.wiley.com/doi/abs/10.1002/ffj.3447>

MONDAL, M., GHOSH, A., TIWARI, O. N., GAYEN, K., DAS, P., MANDAL, M. K., & HALDER, G. (2017). Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes. Energy Conversion and Management, 145, 247-254. < https://www.sciencedirect.com/science/article/abs/pii/S0196890417304259>

OZAKI, K., OHTA, A., IWATA, C., HORIKAWA, A., TSUJI, A., ITO, E., YOSHITOMO, I., HARADA, K.I. (2008) Lysis of cyanobacteria with volatile organic compounds. Chemosphere, 71:1531–1538. < https://www.sciencedirect.com/science/article/abs/pii/S0045653507014944>

PATIAS, L. D., FERNANDES, A. S., PETRY, F. C., MERCADANTE, A. Z., JACOB-LOPES, E., & ZEPKA, L. Q. (2017). Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food research international, 100, 260-266. < https://www.sciencedirect.com/science/article/abs/pii/S0963996917303216>

RIPPKA, R., DERUELLES, J., WATERBURY, J.B., HERDMAN, M., STANIER, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. The Journal of General microbiology, 111:1-61. < https://www.microbiologyresearch.org/content/journal/micro/10.1099/00221287-111-1-1>

SANTOS, A. B., VIEIRA, K. R., NOGARA, G. P., WAGNER, R., JACOB-LOPES, E., ZEPKA, L. Q. (2016a). Biogeneration of Volatile Organic Compounds by Microalgae: Occurrence, Be-havior, Ecological Implications and Industrial Applications. In: Julian Patrick Moore. (Org.). Volatile Organic Compounds: Occurrence, Behavior and Ecological Implications. 1ed.: Nova Science Publishers. 1: 1-18.

SANTOS, A. B., FERNANDES, A. F., WAGNER, R., JACOB-LOPES, E. AND ZEPKA, L. Q. (2016b) Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. Journal of Applied Phycology. 1: 1-10. < https://link.springer.com/article/10.1007/s10811-015-0740-0>

SELLI, S., & CAYHAN, G. G. (2009). Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation–extraction (SDE) and GC–MS. Microchemical Journal, 93(2), 232-235. < https://www.sciencedirect.com/science/article/abs/pii/S0026265X09001118>

SEVERO, I. A., DEPRÁ, M. C., BARIN, J. S., WAGNER, R., DE MENEZES, C. R., ZEPKA, L. Q. AND JACOB-LOPES. (2018). E. Bio-combustion of petroleum coke: The process integration with photobioreactors. Chemical Engineering Science.177: 422-430. < https://www.sciencedirect.com/science/article/pii/S0009250919309029>

SUN, S.M., CHUNG, G.H., SHIN, T.S. (2012) Volatile compounds of the green alga, Capsosiphon fulvescens. Journal of Applied Phycology, 24:1003–1013. < https://link.springer.com/article/10.1007/s10811-011-9724-x>

TASHIRO, Y., DESAI, S. H., & ATSUMI, S. (2015). Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nature communications, 6(1), 1-9. < https://www.nature.com/articles/ncomms8488>

TORRES-TIJI, Y., FIELDS, F. J., & MAYFIELD, S. P. (2020). Microalgae as a future food source. Biotechnology advances, 41, 107536. < https://www.sciencedirect.com/science/article/abs/pii/S0734975020300331>

VIEIRA, K. R., PINHEIRO, P. N., SANTOS, A. B., CICHOSKI, A. J., DE MENEZES, C. R., WAGNER, R., ... & JACOB-LOPES, E. (2019). The role of microalgae-based systems in the dynamics of odors compounds in the meat processing industry. Desalination and Water Treatment,150, 282-292. < https://www.deswater.com/DWT_abstracts/vol_150/150_2019_282.pdf>

VAN DEN BOOM, C. E., VAN BEEK, T. A., POSTHUMUS, M. A., DE GROOT, A., & DICKE, M. (2004). Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. Journal of chemical ecology, 30(1), 69-89. < https://link.springer.com/article/10.1023/B:JOEC.0000013183.72915.99>

VAN DURME, J., GOIRIS, K., DE WINNE, A., DE COOMAN, L., & MUYLAERT, K. (2013). Evaluation of the volatile composition and sensory properties of five species of microalgae. Journal of agricultural and food chemistry, 61(46), 10881-10890.

ZHANG, K., SAWAYA, M. R., EISENBERG, D. S. AND LIAO, J. C. (2008). Expanding metabolism for biosynthesis of non-natural alcohols. Proc Natl Acad Sci USA. 105: 20653-20658. < https://www.pnas.org/content/105/52/20653>

WATSON SB, BROWNLEE B, SATCHWILL T, HARGESHEIMER EE. (2000). Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Water Research. Jul 1;34(10):2818-28. < https://www.sciencedirect.com/science/article/abs/pii/S0043135400000270>




DOI: https://doi.org/10.34117/bjdv.v7i5.30560

Refbacks

  • There are currently no refbacks.