Analysis of the specimen's dimensions variation influence in self -compacting concrete bulk electrical resistivity / Análise da influência da variação das dimensões de corpo de prova na análise da resistividade eletrica volumétrica do concreto autoadensável

Maria Auxiliadora de Barros Martins, Fernando Batista Pinto, Regina Mambeli Barros, Mirian de Lourdes Noronha Motta Melo

Abstract


The electrical resistivity is an important concrete property because it is directly related to the chloride ions penetration that cause the depassivation of the reinforcement, being a corrosion-causing agent. In Brazil, the bulk electrical resistivity test is described by ABNT NBR 9204/2012 (ABNT, 2012) which defines the specimen dimensions as Ø 150 x 150mm and the use of liquid mercury electrodes. Several studies of electrical resistivity are found using varying dimensions of specimens. This article aimed to analyze whether the variation in the specimen dimensions has a significant influence on the bulk electrical resistivity results of the same self-compacting concrete mixture. Three specimens were used for each geometry, Ø 50x100mm, Ø 100x100mm, Ø 100x200mm and Ø 150x150mm. Electrical resistivity was assessed at 28 and 90 days and statistical analysis was performed using the ANOVA program.


Keywords


Bulk electrical resistivity; varying specimen dimensions; Statistical analysis

References


L. Sadowski, Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements, Sci. World J. 2013 (2013).

A.F.P. da Silva, H.E.B. Barros, D.S. Ferreira, L.G. do Nascimento, F.É.G. Lima, L. de O. Bezerra, Patologias Em Estruturas De Concreto Armado: Estudo De Caso / Pathologies in Reinforced Concrete Structures: Case Study, Brazilian J. Dev. 7 (2021) 363–374. doi:10.34117/bjdv7n1-027.

M. Medeiros, J. Andrade, P. Helene, Durabilidade e Vida Útil das Estruturas de Concreto, in: G.C. Isaia (Ed.), Concreto Ciência e Tecnol., IBRACON, 2011: pp. 773–808.

F.C.. Almeida, A. Sales, Efeitos da ação do meio ambiente sobre as estruturas de concreto, in: Elsevier (Ed.), Corrosão Em Estruturas Concreto Armado Teor. Control. e Métodos Análise, 1a, Rio de Janeiro, Brasil, 2014: pp. 51–74.

A.P.F.. Soares, L.T.. Vasconcelos, F.B.C. Nascimento, Corrosão em Armaduras de Concreto, Ciencias Exatas e Tecnol. 3 (2015) 177–188.

D.V. Ribeiro, Durabilidade e vida útil das estruturas de concreto, in: Elsevier (Ed.), Corrosão Em Estruturas Concreto Armado Teor. Control. e Métodos Análise, 1a, Rio de Janeiro, Brasil, 2014: pp. 37–50.

K. Hornbostel, C.K. Larsen, M.R. Geiker, Relationship between concrete resistivity and corrosion rate - A literature review, Cem. Concr. Compos. 39 (2013) 60–72. doi:10.1016/j.cemconcomp.2013.03.019.

P. Ghosh, Q. Tran, Influence of parameters on surface resistivity of concrete, Cem. Concr. Compos. 62 (2015) 134–145. doi:10.1016/j.cemconcomp.2015.06.003.

H. Layssi;, Pouria Ghods;, A.R. Alizadeh;, M. Salehi, Electrical Resistivity of Concrete, Concr. Int. (2015) 293–302.

R. Polder, C. Andrade, B. Elsener, Ø. Vennesland, J. Gulikers, R. Weidert, M. Raupach, Test methods for on site measurement of resistivity of concrete, Mater. Struct. 33 (2000) 603–611. doi:10.1007/bf02480599.

K.R. Gowers, S.G. Millard, Measurement of concrete resistivity for assessment of corrosion severity of steel using wenner technique, ACI Mater. J. 96 (1999).

R. Spragg, Y. Bu, K. Snyder, D. Bentz, J. Weiss, Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning, and Accelerated Curing, in: Jt. Transp. Res. Progr., Indian Department of Transportation and Purdue University, West Lafayette, 2013: pp. 1–16.

R. Spragg, C.. Villani, K. Snyder, D. Bentz, J. Bullard, J. Weiss, Electrical Resistivity Measurements in Cementitious Systems: Observations of Factors that Influence the Measurements, in: Transp. Res. Board, Washington, DC, 2013: pp. 90–98.

J. Gudimettla, G. Crawford, Resistivity tests for concrete-recent field experience, ACI Mater. J. 113 (2016) 505–512. doi:10.14359/51688830.

A.A. Ramezanianpour, A. Pilvar, M. Mahdikhani, F. Moodi, Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Constr. Build. Mater. 25 (2011) 2472–2479. doi:10.1016/J.CONBUILDMAT.2010.11.069.

R. Madandoust, S.Y. Mousavi, Fresh and hardened properties of self-compacting concrete containing metakaolin, Constr. Build. Mater. 35 (2012) 752–760. doi:10.1016/j.conbuildmat.2012.04.109.

A.M. Ramezanianpour, K. Esmaeili, S.A. Ghahari, A.A. Ramezanianpour, Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete, Constr. Build. Mater. 73 (2014) 187–194. doi:10.1016/j.conbuildmat.2014.09.072.

S. Ahmad, An experimental study on correlation between concrete resistivity and reinforcement corrosion rate, Anti-Corrosion Methods Mater. 61 (2014) 158–165. doi:10.1108/ACMM-07-2013-1285.

C. Frazão, A. Camões, J. Barros, D. Gonçalves, Durability of steel fiber reinforced self-compacting concrete, Constr. Build. Mater. 80 (2015) 155–166. doi:10.1016/j.conbuildmat.2015.01.061.

P. Ghosh, Q. Tran, Correlation Between Bulk and Surface Resistivity of Concrete, Int. J. Concr. Struct. Mater. 9 (2015) 119–132. doi:10.1007/s40069-014-0094-z.

Y.N. Sheen, D.H. Le, T.H. Sun, Greener self-compacting concrete using stainless steel reducing slag, Constr. Build. Mater. 82 (2015) 341–350. doi:10.1016/j.conbuildmat.2015.02.081.

J. Gandía-Romero, J. Ramón, R. Bataller, D. Palací, M. Valcuende, J. Soto, Influence of the area and distance between electrodes on resistivity measurements of concrete, Mater. Struct. 50 (2017) 1–12.

N. Singh, S.P. Singh, Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates and metakaolin, Constr. Build. Mater. 121 (2016) 400–409. doi:10.1016/j.conbuildmat.2016.06.009.

D.H. de Bem, D.P.B. Lima, R.A. Medeiros-Junior, Effect of chemical admixtures on concrete’s electrical resistivity, Int. J. Build. Pathol. Adapt. 36 (2018) 174–187. doi:10.1108/IJBPA-11-2017-0058.

P. Ghoddousi, L. Adelzade Saadabadi, Study on hydration products by electrical resistivity for self-compacting concrete with silica fume and metakaolin, Constr. Build. Mater. 154 (2017) 219–228. doi:10.1016/j.conbuildmat.2017.07.178.

M.M. Khotbehsara, E. Mohseni, T. Ozbakkaloglu, M.M. Ranjbar, Durability characteristics of self-compacting concrete incorporating pumice and metakaolin, J. Mater. Civ. Eng. 29 (2017) 1–9. doi:10.1061/(ASCE)MT.1943-5533.0002068.

R. Siddique, A. Kaur, Effect of metakaolin on the near surface characteristics of concrete, Mater. Struct. 8 (2011) 77–78. doi:10.1617/s11527-010-9610-z.

R. Sharma, R.A. Khan, Influence of copper slag and metakaolin on the durability of self compacting concrete, J. Clean. Prod. 171 (2018) 1171–1186. doi:10.1016/j.jclepro.2017.10.029.

R. Singh, R. Kaushik, G. Singh, Study of self compacting concrete using brick dust and marble powder, Int. J. Eng. Res. Appl. 3 (2013) 1283–1286.

H. Sasanipour, F. Aslani, J. Taherinezhad, Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates, Constr. Build. Mater. 227 (2019) 116598. doi:https://doi.org/10.1016/j.conbuildmat.2019.07.324.

H. Sasanipour, F. Aslani, Effect of specimen shape, silica fume, and curing age on durability properties of self-compacting concrete incorporating coarse recycled concrete aggregates, Constr. Build. Mater. 228 (2019) 117054. doi:10.1016/j.conbuildmat.2019.117054.

N. Singh, M. M, S. Arya, Utilization of coal bottom ash in recycled concrete aggregates based self compacting concrete blended with metakaolin, Resour. Conserv. Recycl. 144 (2019) 240–251. doi:10.1016/j.resconrec.2019.01.044.

P.R. da S. and J. de B. Tiago Barroqueiro, High-Performance Self-Compacting Concrete with Durability Assessment, Build. 2020_MDPI. (2020) 1–23.

H. Sasanipour, F. Aslani, Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates, Constr. Build. Mater. 236 (2020) 117540. doi:10.1016/j.conbuildmat.2019.117540.

ABNT, NBR 9204 : Concreto endurecido: Determinação da Resistidade eletrico-volumétrica- Metodo de ensaio, Assoc. Bras. Normas Técnicas,. (2012) 12.

ABNT, NBR 16697: Cimento Portland - Requisitos, Assoc. Bras. Normas Técnicas,. (2018) 12.

A.S. Lamounier, C.Z.F. Pinto, M.T.P. Aguilar, J.O.S. Paulino, Determinação da resistividade elétrica e da porosidade aberta de compósitos cimentícios de engenharia., in: 21o CBECIMAT - Congr. Bras. Eng. e Ciência Dos Mater., Cuiabá, MT, 2014: pp. 2194–2211. doi:10.2466/pr0.1981.48.1.335.




DOI: https://doi.org/10.34117/bjdv7n5-477

Refbacks

  • There are currently no refbacks.