Mixture design for self-compacting concrete using a virtual particle packing method/ Método de dosagem do concreto autoadensável utilizando o empacotamento virtual dos agregados

Fernando Batista Pinto, Maria Auxiliadora de Barros Martins, Demarcus Werdine, Valquíria Claret dos Santos, Paulo Cesar Gonçalves, Regina Mambeli Barros, Mirian de Lourdes Mota Mello

Abstract


Self-compacting concrete is still little used in Brazil and in the world. This is due to the lack of studies on the subject and the difficulty in obtaining an ideal mixture proportion. The performance of studies in this area is of great importance to increase knowledge and increase the visibility of this concrete in the market. In this context, this article presents a contribution to self-compacting concrete mixture design using the virtual packing aggregates method. EMMA software has been used. Four SCC mixtures were analyzed in which the M1 mixture composed of 100% natural sand. Mixtures M2, M3 and M4 with partial replacement of fine aggregate by metallic, ceramic and rubber residues respectively. The good results obtained indicate that the methodology presented in this study for SCC mixture design was effective thus avoiding several mixtures steps.


Keywords


Self-compacting concrete, mixture design methods, virtual particle packing, software EMMA.

Full Text:

PDF

References


H. Okamura, M. Ouchi, Self-Compacting Concrete, J. Adv. Concr. Technol. 1 (2003) 5–15.

EFNARC, The European Guidelines for Self-Compacting Concrete Specification, Production and Use, (2005) 68. doi:10.1007/s12033-012-9613-9.

EFNARC, Directrices Europeas para el Hormigón Autocompactante. Especifaciones, Producción y Uso., (2006) 74.

D. Chopra, R. Siddique, Kunal, Strength, permeability and microstructure of self-compacting concrete containing rice husk ash, Biosyst. Eng. 130 (2015) 72–80. doi:10.1016/j.biosystemseng.2014.12.005.

EFNARC, Specification and Guidelines for Self-Compacting Concrete, Eur. Fed. Natl. Assoc. Represent. Prod. Appl. Spec. Build. Prod. Concr. (2002) 32. doi:0 9539733 4 4.

P.K. Mehta, Greening of the Concrete Industry for Sustainable Development, Concr. Int. 24 (2002) 23–28. https://www.scielo.br/scielo.php?script=sci_nlinks&ref=000175&pid=S1678-8621201300020000700023&lng=en.

G.T.M. Silva, C.C. Ribeiro, S.E.C. Ribeiro, D.M. Oliveira, W.S. Oliveira, Construction and demolition waste in concrete technology: a review, Brazilian J. Dev. 6 (2020) 4303–4308. doi:DOI:10.34117/ bjdv6n7-357

M.B. Leite, D. Dal Molin, Avaliação da atividade pozolânica do material cerâmico presente no agregado reciclado de resíduo de C&D, Sitientibus. 26 (2002) 111–130. http://www2.uefs.br/sitientibus/pdf/26/avialiacao_da_atividade_pozolanica.pdf.

M. Uysal, K. Yilmaz, Effect of mineral admixtures on properties of self-compacting concrete, Cem. Concr. Compos. 33 (2011) 771–776. doi:10.1016/j.cemconcomp.2011.04.005.

B.F. Tutikian, M. Pacheco, Concreto autoadensável (CAA) - comparativo entre métodos de dosagem, Rev. Ibracon Estruturas e Mater. 5 (2012) 500–529. http://dx.doi.org/10.1590/S1983-41952012000400006.

C. Shi, Z. Wu, K. Lv, L. Wu, A review on mixture design methods for self-compacting concrete, Constr. Build. Mater. 84 (2015) 387–398. doi:10.1016/j.conbuildmat.2015.03.079.

A.F.P. Silva, H.E.B. Barros, D.S. Ferreira, L.G. Nascimento, F.E.G. Lima, L.O. Bezerra, Patologias Em Estruturas De Concreto Armado: Estudo De Caso / Pathologies in Reinforced Concrete Structures: Case Study, Brazilian J. Dev. 7 (2021) 363–374. doi:10.34117/bjdv7n1-027.

R. Sharma, R.A. Khan, Durability assessment of self compacting concrete incorporating copper slag as fine aggregates, Constr. Build. Mater. 155 (2017) 617–629. doi:10.1016/j.conbuildmat.2017.08.074.

F.A.P. RECENA, Método de dosagem de concreto pelo volume de pasta com emprego de cinza volante, Universidade Federal do Rio Grande do Sul, 2011.

N. Su, K.-C. Hsu, H.-W. Chai, A simple mix design method for self-compacting concrete, Cem. Concr. Res. 31 (2001) 1799–1807. doi:10.1016/S0008-8846(01)00566-X.

Õ. Petersson, R. BIillberg, B.K. Van, A model for self-compacting concrete, in: D.J. eds. . BARTOS, P. J. M.; MARRS, D. L ; CLEAND (Ed.), Int. Rilem Conf. ProiJuction Methods Work. Concr., E & FN SPON, 1996: pp. 483–492.

P.C.C. Gomes, R. Gettu, L. Agulló, Uma nova metodologia para obtenção de concreto autoadensável de alta resistência com aditivos minerais, in: V SIMPÓSIO EPUSP SOBRE ESTRUTURAS CONCRETO, São Paulo, SP, 2003.

P.L. Domone, Self-compacting concrete: An analysis of 11 years of case studies, Cem. Concr. Compos. 28 (2006) 197–208.

American Concrete Institute, ACI 237 R: Self-Consolidating Concrete, (2007).

P. Desnerck, V. Boel, B. Craeye, P. V. Itterbeeck, Mechanical Properties, in: K.H.. Khayat, G. De Schutter (Eds.), Mech. Prop. Self-Compacting Concr., RILEM, 2014: pp. 15–71. doi:10.1007/978-3-319-03245-0.

W.L. Repette, Concretos de última geração: presente e futuro, in: G.C. ISAIA (Ed.), Concreto - Ensino, Pesqui. e Realiz., Instituto Brasileiro do Concreto, São Paulo, SP, 2005: pp. 1509–1550.

G.. MAZZUCCO, B.. POMARO, V.A.. SALOMONI, C.E. MAJORANA, Numerical modelling of ellipsoidal inclusions., Constr. Build. Mater. 167 (2018) 317–324.

C. LONDERO, Dosagem de concreto ecológico com base em estudo de empacotamento de partículas, Universidade Federal do Paraná, 2016.

W.B. Fuller, S.E. Thompson, The laws of proportioning concrete, Trans. Am. Soc. Civ. Eng. 59 (1907) 67–143.

J. ANDREASEN, A. H. M.; ANDERSEN, About the Relationship between Density and Particle Spacing in Products Made of Loose Particles, Kolloid-Z. 50 (1930) 217–218.

E.. FUNK, D.R. DINGER, Coal grinding and particle size distribution studies for coal-water slurries at high solids content, Empire State Electric Energy Research Corporation, New York, 1980.

C. Londero, L.A. Lenz, M.R. Dos Santos, N.S. Klein, Determinação da densidade de empacotamento de sistemas granulares compostos a partir da areia normal do IPT: comparação entre modelos de otimização de distribuição granulométrica e composições aleatórias, Ceramica. 63 (2017) 22–33. doi:10.1590/0366-69132017633652018.

H. MADANI, J. ROSTAMI, M.N. NOROUZIFAR, H.K. MALEH, An Investigation on the Effect of Aggregates Packing Density on the Properties of High-Performance Concrete Mixtures, AUT J. Civ. Eng. 1 (2017) 205–214.

A.L. Castro, V.C. Pandolfelli, Revisão : Conceitos de dispersão e empacotamento de partículas para a produção de concretos especiais aplicados na construção civil, Ceramica. 55 (2009) 18–32.

A.M.M. Neville, J.J.J. Brooks, Concrete Technology, Second, Pearson Education Limited, London, 2010. doi:10.1016/0360-1323(76)90009-3.

M. Galetakis, C. Piperidi, A. Vasiliou, G. Alevizos, E. Steiakakis, K. Komnitsas, A. Soultana, Experimental investigation of the utilization of quarry dust for the production of microcement-based building elements by self-flowing molding casting, Constr. Build. Mater. 107 (2016) 247–254. doi:10.1016/j.conbuildmat.2016.01.014.

F. De Larrard, Concrete mixture proportioning a scientific approach, E & FN SPON, London, 1999.

T.. SEDRAN, F. DE LARRARD, Optímization of seif-compactíng concrete thanks to packing model., in: A. SKARENDAHL (Ed.), First Int. Rilem Symp. Self-Compacting Concr., Estocolmo,Suécia, 1999: pp. 321–332.

P.C.C. Gomes, A. Barros, Métodos de dosagem de concreto autoadensável, First, Editora PINI LTDA, São Paulo, 2009.

M. Galetakis, A. Soultana, A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector, Constr. Build. Mater. 102 (2016) 769–781. doi:10.1016/j.conbuildmat.2015.10.204.

ABNT, NBR 6118: Projeto de estruturas de concreto, Assoc. Bras. Normas Técnicas,. (2018) 238.

A. Kostrzanowska-Siedlarz, J. Gołaszewski, Rheological properties of High Performance Self-Compacting Concrete: Effects of composition and time, Constr. Build. Mater. 115 (2016) 705–715. doi:10.1016/j.conbuildmat.2016.04.027.

ELKEN, EMMA Elkem Materials Mixture Analyzer, (2019). https://www.elkem.com/download-centre/?query=&tags=Concrete&cat=3.

H.C.F.. Cordon;, C.S. Teixeira, Estudo da Influência do Empacotamento das Partículas na resistência à compressão do concreto, in: 21° Simp. Int. Iniciação Cient. Da USP, Mauá,SP, 2000: p. 12.

S. Gopinath, A. Murthy, D. Ramya, N. Iyer, Optimised mix design for normal strength and high performance concrete using particle packing method, Arch. Civ. Eng. 57 (2011) 357–371. doi:10.2478/v.10169-011-0026-0.

I.S.G. Cavaliere, R.S. Campos, M.P. Barbosa, A.L. Casto, Desenvolvimento de concreto autoadensável com agregados oriundos de RCD: Dosagem a partir do conceito de empacotamento de partículas, in: 58o Congr. Bras. Do Concretoo, Belo Horizonte, 2016: pp. 1–16.

I.S.G. Cavaliere, R.S. Campos, M.P. Barbosa, A.E.E.P.G.A. Jacintho, Efeito dos agregados graúdos reciclados nas propriedades de concretos autoadensáveis dosados por empacotamento de partículas, in: V Congr. Ibero-Americano Sobre Betão Auto-Compactavel e Betões Especiais, Universitat Politècnica València, Valencia, 2018: pp. 147–156. doi:10.4995/HAC2018.2018.5621.

ABNT, NBR 15823-2: Concreto-autoadensável – Parte 2: Determinação do espalhamento e do tempo de escoamento – Método do cone de Abrams, Assoc. Bras. Normas Técnicas,. (2017).

ABNT, NBR 15823-5: Concreto-autoadensável – Parte 5: Determinação da viscosidade – Método do funil V, Assoc. Bras. Normas Técnicas,. (2017).

ABNT, NBR 15823-4 Concreto-autoadensável – Parte 4: Determinação da habilidade passante – Método da caixa L, Assoc. Bras. Normas Técnicas,. (2017).

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS., NBR 5739-2007 - Ensaio de compressao corpo cilindrico.pdf, (2007) 6.

ABNT, NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água porimersão - Índice de vazios e massa especifica, Assoc. Bras. Normas Técnicas,. (2009) 3.

G. Singh, R. Siddique, Strength properties and micro-structural analysis of self-compacting concrete made with iron slag as partial replacement of fine aggregates, Constr. Build. Mater. (2016). doi:10.1016/j.conbuildmat.2016.09.154.

R.K. Sandhu, R. Siddique, Strength properties and microstructural analysis of self-compacting concrete incorporating waste foundry sand, Constr. Build. Mater. 225 (2019) 371–383. doi:10.1016/j.conbuildmat.2019.07.216.

S. Hesami, I.S. Hikouei, S.A.A. Emadi, Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber, J. Clean. Prod. 133 (2016) 228–234. doi:10.1016/j.jclepro.2016.04.079.

ABNT, NBR 8953: Concreto para fins estruturais — Classificação pela massa específica, por grupos de resistência e consistência, Assoc. Bras. Normas Técnicas,. (2015) 8.

C. KHAJURIA, R. SIDDIQUE, Use of iron slag as partial replacement of sand to concrete, Int. J. Sci. Eng. Technol. Res. (IJSETR. 3 (2014) 1877–1880.

A. Parashar, P. Aggarwal, B. Saini, Y. Aggarwal, S. Bishnoi, Study on performance enhancement of self-compacting concrete incorporating waste foundry sand, Constr. Build. Mater. 251 (2020) 118875. doi:10.1016/j.conbuildmat.2020.118875.

X. Shu, B. Huang, Recycling of waste tire rubber in asphalt and Portland cement concrete: an overview, Constr. Build. Mater. 67 (2014) 217.

CEB, Diagnosis and Assessment of Concrete Structures – State of the Art Report, Bull. d’ Inf. n. 192. (1989).

Helene. P. R. L., La agresividad del medio y la durabilidad del hormigón, in: AATH (Ed.), Hormigón, 1983.

R. Siddique, E.H. Kadri, Effect of metakaolin and foundry sand on the near surface characteristics of concrete, Constr. Build. Mater. 25 (2011) 3257–3266. doi:10.1016/j.conbuildmat.2011.03.012.

N. Gurumoorthy, K. Arunachalam, Durability Studies on Concrete Containing Treated Used Foundry Sand, Constr. Build. Mater. 201 (2019) 651–661. doi:https://doi.org/10.1016/j.conbuildmat.2019.01.014.




DOI: https://doi.org/10.34117/bjdv7n5-415

Refbacks

  • There are currently no refbacks.