Metabolism of lipid and fatty acid composition of early dwarf cashew (Anacardium occidentale L.) leaves under water deficiency / Metabolismo da composição lipídica e de ácidos gordos do caju anão precoce (Anacardium occidentale L.) folhas sob deficiência de água

Micheline Soares Costa Oliveira, Luis Flávio Mendes Saraiva, Eliane Almeida de Lima, Larissa Linhares Carvalho Mendes, Mirle Thais Aguiar Carneiro, Fernando Monteiro de Paula

Abstract


In the present study, were used seeds of precocious dwarf-cashew (Anacardium occidentale L.) CCP 076. The plants were cultivated at green house in vermiculite and water (2:1 v/v) in plastic pots. 40 days after the cultivation, the irrigation of a group of plants was suspended, destined to the stressed treatment. The total fatty acids total contents (determined by TLC and CG/MS) and the unsaturation index they were analyzed with 30, 45 and 60 days after the suspension of the irrigation. The CG/MS evidenced the presence of the following fatty acid: palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and linolenic acid (18:3). The most severe level of hydric deficiency applied (60 days of stress) induced reductions in the content of 18:3 (44,4 %) and increase in the content of 16:0 (25,6%). The index presented a reduction of 11 % to the 60 days of water stress.


Keywords


cashew, polar lipid, water stress, composition of the membranes lipids.

References


BARROS, L. M., 1991. Caracterização morfológica e isoenzimatica do cajueiro (Anacardim occidentale L.), tipos comum e anão, por meio de técnicas multivariadas. Tese de Doutorado, ESLAQ – Piracicaba – SP.

BARROS, M. L., CAVALCANTI, J. J., VASCONCELOS, PAIVA, J. R., 2000. Seleção de clones de cajueiro anão para plantio comercial no Estado do Ceará. Pesquisa Agropecuária Brasileira, 11, 2197-2204.

BLIGH E. G., DYER W. J., 1967. A rapid method of total lipid extraction and purification. Can Jour. Bioch. Physiol., 37, 911-917.

BRAGA, R., 1976. Plantas do Nordeste, especialmente do Ceara. 2ª ed. Fortaleza, ESAM, p. 540.

CAVALCANTE JUNIOR, A. T., 1994. Tese de Doutorado, Escola Superior de Agricultura de Larvas – Minas Gerais.

CHETAL, S., WAGLE, S. D, NAINAWATEE, H. S., 1980. Glycolipid changes in wheat and barley chloroplast under water stress. Plant Scien. lett., 20, 225-230.

CHETAL S., WAGLE D. S., NAINAWATEE H. S., 1982. Alterations in glycolipids of Wheat and Barley leaves under water stress. Phytochemistry, 21, 51-53.

DAIE, J., 1988. Mechanism of drought induced alterations in assimilate partitioning and transport in crops. Critical Reviews in Plant Scien., 7, 117-137.

DUXBURY C. I., LEGGE R. I. POLIYATH, THOMPSON J. E., 1991. Lipid breakdown in smoth microsomal membranes from bean cotyledons alters membrane proteins and induced proteolysis. Jour. of Exper. Bot., 42, 103-112.

FERRARI-ILIOU R., PHAM THI A.T., VIEIRA DA SILVA J., 1984. Effect of water stress on the lipid and fatty acid composition of cotton (Gossypium hirsutum) chloroplasts. Plant Physiol., 62, 219-224 .

FERRARI-ILIOU R., PHAM THI A. T., D`ARCY-LAMETA A., ZUILY-FODIL, MAZILIAK P.,1994. Water stress increased susceptility to peroxidation of leaf total lipophilic extraits. Plant Scien. today, les Colloques no. 59, ed. INRA Paris.

HUBAC C., GUERRIER M., FERRAN J., TREMOLIERES A., 1989. Change of leaf lipid composition during water stress in two genotypes of Lupinis albus resistant or susceptible to drought. Plant Physiol. Bioch., 27, 737-744.

LEPAGE M., 1967. Identification and composition of turnip roots lipids. Lipids, 2, 244-250.

METCALFE I. D., SCHEMITZ A. A., PELKA J. R.,1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem., 38, 514-515.

MITCHELL J. D., MORI, S. A., 1987. The cashew and its relatives (Anacardium: Anacardiaceae). Men. New York Botany Garden, 42, 1-76.

MONTEIRO DE PAULA F., PHAM THI A. T., JUSTIN A. M., DEMANDRE C., MAZLIAK P., 1990. Effect of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Scien., 66, 185-193.

NAVARI-IZZO F., QUATACCI M. F, IZZO R., 1989. Lipid changes in maize seedlings in response to field water deficits. Jour. Exper. Bot., 40, 675-680.

NIELL S. J., BURNETT E. C., 1999. Regulation of gene expression during water déficit stress. Plant Growth Regul., 29, 23-33.

NORBERG I., NILSSON R., LILYEENBERG C., 1990. A study of membrane lipid composition and lipid phase behavior of oat root plasma membranes indution oof dehydration tolerance. 7th Congress of FESPP, Sweden. Physiol. Plantar., 79 p. 644.

PEIXOTO, A., 1960. Caju (Produtos Rurais, 13). Ministério da Agricultura, p. 61.

PHAM THI A. T., VIEIRA DA SILVA J., MAZLIAK P., 1990. The role of membrane lipids in plant resistance to water stress. Bull. Soc. Bot. Fr, 137, 99-114.

SYLVESTER I., PAULIN A., 1987. Accelerated ethylene production as related to changes in lipids and electrolyte leakage during senescence of petals of cut carnation (Dianthus cooryophyllus). Plant Physiol., 70, 530-536.

STEVANOVIC B., PHAM THI A. T., MONTEIRO DE PAULA F., VIEIRA DA SILVA J., 1992. Effects of dehydration and rehydration on the polar lipids and fatty acids composition of Ramonda species. Can Jour. Bot., 70, 107-113.

TEULAT B., MONNEVEUX P., WERY J., BORRIES C., SOUYRIS I., CHARRIER A., THIS D., 1997. Relationship between relative water content and growth parameters under water stress in barley: a QLT study. New Physiology. 137, 99-107.

WILSON R. F., BURKE J. J., QUISENBERRY J. E., 1987. Plant morphological and biochemical responses to field water deficits. II. Responses of leaf glycerolipid composition in cotton. Plant Physiol., 84, 251-254.




DOI: https://doi.org/10.34117/bjdv.v7i5.29775

Refbacks

  • There are currently no refbacks.