Composite membrane and Evaluation on Separation Oil/Water / Membrana composta e avaliação na separação de óleo / água

Luana Oliveira, Antonielly dos Santos Barbosa, Rochelia Silva Souza Cunha, Joseane Damasceno Mota, Lucimar Pacheco Gomes, Meiry Gláucia Freire Rodrigues

Abstract


A geração de efluentes contaminados com compostos orgânicos, lançamento ou derramamento nesses corpos d'água pode conduzir a sérios problemas ambientais. A remoção de poluentes químicos na água apresenta-se como uma das questões centrais na remediação ambiental. Nesse sentido, as membranas vêm ganhando importância cada vez maior na área ambiental. O presente estudo tem como objetivo desenvolver uma membrana compósita utilizando UHMWPE/LDPE/CTAC-HGC para ser utilizada na separação emulsão óleo/água de efluentes de águas residuais. A membrana polimérica e a membrana compósita foram preparadas por compactação a seco uniaxial e sinterização. Tanto a argila verde dura (HGC) quanto a argila verde dura organofilizada com cloreto de cetiltrimetilamônio (CTAC-HGC) foram caracterizadas por difração de raios-X (XRD), espectroscopia na região do infravermelho (IV) e microscopia eletrônica de varredura (MEV). UHMWPE, membrana polimérica e membrana compósita foram caracterizados por XRD e SEM. O fluxo de água através da membrana compósita foi avaliado usando água pura como permeado. O potencial da membrana compósita para separar emulsões óleo-água foi testado. A membrana compósita apresentou excelente remoção do óleo, exibindo valor superior a 99,60%, evidenciando o processo de separação por membrana compósita como uma tecnologia alternativa para o tratamento do óleo.


Keywords


argilas organofílicas, argila verde dura, UHMWPE, LDPE, membranas compósitas, poluição, separação emulsão óleo/água.

References


Fakhru'l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 170 (2009) 170: 530-551.

Reed M. Produced water 2: environmental issues and mitigation technologies. S. Johnsen Eds. Plenum Publ.: New York; 1996.

Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. J Memb Sci. 151 (1998) 151: 13-28.

Padaki M, Surya MR, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, et al. Membrane technology enhancement in oil–water separation. A review. Desalination. 357 (2015) 197–207.

Adham S, Hussain A, Minier-Matar J, Janson A, Sharm R. Membrane applications and opportunities for water management in the oil & gas industry. Desalination. 440 (2015) 2-17.

Tanudjaja HJ, Hejas CA, Tarabara VV, Fane AG, Chew JW. Membrane-based separation for oily wastewater: A practical perspective. Water Res. 156 (2019) 347-365.

Ismail NH, Salleh WNW, Ismail AF, Hasbullah H, Yusof N, Aziz F, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep. Purif. Technol. 233 (2020) 116007.

Munirasu S, Haija MA, Banat F. Use of membrane technology for oil field and refinery produced water treatment - A review. Process Saf Environ Prot. (100) 2016 183-202.

El-Samak AA, Ponnamma D, Hassan MK, Ammar A, Adham S, Al-Maadeed MAA, et al. Designing Flexible and Porous Fibrous Membranes for Water Separation-A Review of Recent Developments. Polymer Reviews, 2020.

Burggraaf AJ, Cot L. Fundamentals of Inorganic Membrane Science and Technology, 1rd ed.: Amsterdam; 1996.

Anadão P. Tecnologia de nanocompósitos polímero/argila, Artliber ed.: São Paulo; 2012.

Campelo NM, Mota MF, Rodrigues MGF, Silva FM. Produção de nanocompósitos de PMMA-MMT in-situ via processo de polimerização em massa-suspensão. In: Proceedings of the XIX Congresso Brasileiro de Engenharia Química, COBEQ, Búzios, 2012.

Mulder J. Basic Principles of Membrane Technology, 2th ed. Springer: Netherlands; 1997.

Anadão P, Sato LF, Wiebeck H, Valenzuela-Díaz FR. Montmorillonite as a component of polysulfone nanocomposite membranes. Appl Clay Sci. 48 (2010) 127–132.

Buruga K, Kalathi JT, Kim KH, Ok YS, Danil B. Polystyrene-halloysite nano tube membranes for water purification. J Ind Eng Chem. 61 (2018) 169–180.

Nasir A, Masood F, Yasin T, Hameed A. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J Ind Eng Chem. 79 (2019) 29–40.

Said, A.A.; Arous, O.; Cherif, A.Y.; Berbar, Y.; Amara M.; Van der Bruggen, B. Surfactant based modification of sodic Algerian illite clay for the preparation of polymeric membranes: application for separation of iron and zinc ions from aqueous solutions. Polymer Bulletin. 76 (2019) 3659–3676.

Buruga K, Song H, Shang J, Bolan N. A review on functional polymer-clay based nanocomposite membranes for treatement of water. J Hazard Mater. 379 (2019) 120584.

Berber MR. Current Advances of Polymer Composites for Water Treatment and Desalination. J Chem. 2020.

Schafer AI, Fane AG, Waite TD. Nanofiltration: Principles and Applications, 1rd ed. Elsevier Advanced Technology:UK; 2004.

Scheibler JR, Santos ERF, Barbosa AS, Rodrigues MGF. Performance of zeolite membrane (ZSM-5/γ-Alumina) in the oil/water separation process. Desalin Water Treat. 1 (2014) 1-7.

Barbosa AS, Barbosa AS, Rodrigues MGF. Synthesis of MCM-22 Zeolite Membrane on A Porous Alumina Support. Mater Sci Forum. 805 (2015) 272-278.

Barbosa AS, Barbosa AS, Rodrigues MGF. Synthesis of zeolite membrane (MCM-22/α-alumina) and its application in the process of oil-water separation. Desalin Water Treat. 1 (2015) 1-8.

Barbosa AS, Barbosa AS, Barbosa TLA, Rodrigues MGF. Synthesis of zeolite membrane (NaY/alumina): effect of precursor of ceramic support and its application in the process of oil-water separation. Sep Purif Technol. 200 (2018) 141-154.

Barbosa AS, Barbosa AS, Rodrigues MGF. Y-Type Zeolite Membranes: Synthesis by Secondary by Method and Application in Treatment of Oily Effluents. Mater Sci Forum. 958 (2019) 23-28.

Barbosa AS, Barbosa AS, Rodrigues MGF. Contaminants Removal in Wastewater Using Membrane Adsorbents Zeolite Y/Alpha-Alumina. Mater Sci Forum. 912 (2018) 12-15.

Silva FMN, Lima EG, Barbosa TLA, Rodrigues MGF. Development of MOR Zeolite Membranes Supported nn ɣ-alumina and α-alumina obtained from the decomposition of aluminum sulphate. In: Proceedings of the 13th International Conference Catalysis Membrane Reactors; ICCMR, Houston, 2017.

Cunha RSS, Mota JD, Mota MF, Rodrigues MGF, Machado F. Preparation and Characterization of Tubular Composite Membranes and their Application in Water Flow Measurements. Mater Sci Forum. 912 (2018) 263-268.

Mota JD, Cunha RSS, Leite RCN, Rodrigues MGF, Carvalho LH, Lima INL. Desempenho de Membrana Sinterizada de PEUAPM na Remoção de Óleo: Efeito da Incorporação de Argila Organofílica. In: Proceedings of the XIV Latin American Symposium on Polymers (SLAP)/XII Ibero American Congress on Polymers (CIP), Porto de Galinhas, 2014.

Cunha RSS, Mota JD, Rodrigues MGF, Leite RCN, Leite RCN. Estudo comparativo da modificação de membranas tubulares PEUAPM com adição de argilas organofílicas destinadas a separação de emulsões óleo/água. In: Proceedings of the XIV Latin American Symposium on Polymers (SLAP)/XII Ibero American Congress on Polymers (CIP), Porto de Galinhas, 2014.

Biron DS, Zeni M, Bergmann CP, Santos V. Analysis of Composite Membranes in the Separation of Emulsions Sunflower oil/water. Mater Res. 20 (2017) 843-852.

Mittal P, Jana S, Mohanty K. Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater. Desalination. 282 (2011) 54–62.

Mota MF, Rodrigues MGF, Machado F. Oil-Water Separation Process with Organoclays: A Comparative Analysis. Appl Clay Sci. 99 (2014) 237-245.

Carvalho LH, Alves TS, Leal TL, Lira HL. Efeitos das Condições de Preparação e de Modificação de Superfície de Membranas de PEUAPM na Separação Água/Óleo. Polímeros. 19 (2009) 72-78.

Henderson SB, Grigson, SJW, Johnson P, Roddie BD. Potential Impact of Production Chemicals on the Toxicity of Produced Water Discharges from North Sea Oil Platforms. Mar Pollut Bull. 38 (1999) 1141-1151.

Chapman, H.D. Cation exchange capacity. In: Black CA, Evans DD. White JL, Ensminger LE, Clark FE, Dinauer RC. (Eds.). Methods of Soild Analysis Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, WI, 1965.

Grim RE. Clay Mineralogy, 2nd ed. McGraw-Hill Book: New York; 1968.

Oliveira GC, Mota MF, Silva MM, Rodrigues MGF, Laborde HM. Performance of natural sodium Clay treated with ammonium salt in the separation of emulsified oil in water. Brazilian Journal of Petroleum and Gas, 6 (2012) 171-183.

Rodrigues MGF. Physical and catalytic characterization of smectites from Boa-Vista, Paraíba, Brazil. Cerâmica, 49 (2003) 146-150.

Paiva LB, Morales AR, Valenzuela-Díaz FR. Organoclays: Properties, preparation and applications. Appl Clay Sci. 42 (2008) 8-24.

Wang CC, Juan GLC, Lee CK, Hsu TC, Lee JF, Chao HP. Effects of Exchanged Surfactant Cations on the Pore Structure and Adsorption Characteristics of Montmorillonite. J Colloid Interface Sci. 280 (2004) 27-35.

Choy JH, Kwak SY, Han YS, Kim BW. New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Mater Lett. 33 (1997) 143-147.

Madejová J. FTIR techniques in clay mineral studies Vib Spectrosc. 31 (2003) 1-10.

Akçay M. Characterization and determination of the thermodynamic and kinetic properties of p-CP adsorption onto organophilic bentonite from aqueous solution. J Colloid Interface Sci. 280 (2004) 299-304.

Xi Y, Ding Z, He H, Frost RL. Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochim. Acta A. 61 (2005) 515-525.

Kozak M, Domka L. Adsorption of the quaternary ammonium salts on montmorillonite. J Phys Chem Solids. 65 (2004) 441-445.

Russel JD, Fraser AR. Infrared methods in Clay mineralogy: spectroscopy and chemical determinative methods. 1rd ed. Chapman & Hall: London;1994.

Bohor BF, Hughes RE. Scanning Electron Microscopy of Clays and Clay Minerals. Clay Clay Miner. 19 (1971) 49–54.

Fesharaki O, Garcia-Romero E, Cuevas-Gonzalez J, Lopez-Martinez N. Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Minerals. 42 (2007) 187-201.

Ye Z, Zhu S, Wang WJ, Alsyouri H, Lin YS. Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM‐41 particles. J Polym Sci Part B: Polym Phys. 41 (2003) 2433-2443.

Liu S, Zhao B, He D. Crystallization and Microporous Membrane Properties of Ultrahigh Molecular Weight Polyethylene with Dibenzylidene Sorbitol. J Appl Polym Sci. (2014) 40706.

Wu, J.J.; Buckley, C.P.; O´Connor, J.J. Processing of Ultra-High Molecular Weight Polyethylene: Modelling the Decay of Fusion Defects. Chem Eng Res Des. 80 (2002) 423-431.

Baker RW. Membrane Technology and Applications. 2rd ed. John Wiley & Sons Inc: California; 2004.

Barbosa TLA, Silva FMN, Barbosa AS, Lima EG, Rodrigues MGF. Synthesis and application of a composite NaA zeolite/gamma-alumina membrane for oil-water separation process. Cerâmica. 66 (2020) 137-144.

Barbosa AS, Barbosa AS, Rodrigues MGF. Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Cerâmica. 65 (2019) 531-540.

Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução n° 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes. Brasília, Ministério do Meio Ambiente, 2011.




DOI: https://doi.org/10.34117/bjdv.v7i5.29696

Refbacks

  • There are currently no refbacks.