Leptin, interleukin levels and nutritional status in Alzheimer’s Disease: A Case-Control Study / Leptina, níveis de interleucinas e estado nutricional na Doença de Alzheimer: Um Estudo de Caso-Controle

Angelica Miki Stein, Ruliam Queiroz, Maria Vaitsa Loch Haskel, Anne Karine Bosetto Fiebrantz, Thiago Duarte, Marta Maria Medeiros Frescura Duarte, Weber Cláudio Francisco Nunes da Silva, Juliana Sartori Bonini

Abstract


Objective: to compare the circulating/ serum levels of pro-inflammatory and anti-inflammatory cytokines and levels of leptin between Alzheimer’s disease (AD) patients and healthy older adults, correlating the levels of cytokines and leptin with nutritional status and global cognition. Methods: A case-control study, in which 32 older adults participated in the study, was divided in two groups: AD Group (AD; n=16) and Non-demented older adults as Control Group (CG; n=16).
The groups were paired by age, sex and comorbidities in relation to AD group. To identify the levels of cytokines and leptin, Enzyme Linked Immune Sorbent Assay (ELISA) tests were used.
The Mini-Nutritional Assessment was used to measure the nutritional status and the Mini-Mental State Exam, global cognition. Comparisons between the case-control groups were performed by
t-test and Hedge’s g effect size was calculated. Pearson's correlation test was used to analyze the associations between the observed and paired differences. Simple linear regression was applied in functional relationship between the variables. Results: The Alzheimer’s disease group and Control Group were different to all of interleukins and leptin. A negative very strong relationship between leptin and BMI was found in Alzheimer’s disease group (R2:-0.6425; p<0,05), but not in the Control Group. No associations were found among global cognition, MMSE, interleukins and nutritional status. Conclusion: The AD patients had higher levels of proinflammatory interleukins, and lower levels of anti-inflammatory interleukin and leptin compared to older healthy adults, which suggests an unbalanced immune system. The reduced leptin serum levels were associated with increase body mass index, which suggests that in Alzheimer’s disease the reduce of leptin is associated with increase BMI.


Keywords


Alzheimer disease, Dementia, Tumor necrosis factor, Obese protein, Nutritional status .

References


Baranowska-bik, A., Bik, W., Styczynska, M., Chodakowska-zebrowska, M., Barcikowska, M., Wolinska-witort, E., Kalisz, M., Martynska, L., Baranowska, B., 2015. Plasma leptin levels and free leptin index in women with Alzheimer ’ s disease. Neuropeptides 52, 73–78. https://doi.org/10.1016/j.npep.2015.05.006

Bateman, R.J., Xiong, C., Benzinger, T.L.S., Fagan, A.M., Goate, A., Fox, N.C., Marcus,

D.S., Cairns, N.J., Xie, X., Blazey, T.M., Holtzman, D.M., Santacruz, A., Buckles, V.,

Oliver, A., Moulder, K., Aisen, P.S., Ghetti, B., Klunk, W.E., McDade, E., Martins, R.N., Masters, C.L., Mayeux, R., Ringman, J.M., Rossor, M.N., Schofield, P.R., Sperling, R.A., Salloway, S., Morris, J.C., 2012. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804. https://doi.org/10.1056/NEJMoa1202753

Belkhelfa, M., Rafa, H., Medjeber, O., Arroul-Lammali, A., Behairi, N., Abada-Bendib, M., Makrelouf, M., Belarbi, S., Masmoudi, A.N., Tazir, M., Touil-Boukoffa, C., 2014. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: A study in Algerian patients. J. Interf. Cytokine Res. 34, 839– 847. https://doi.org/10.1089/jir.2013.0085

Brucki, S.M.D., Nitrini, R., Caramelli, P., Bertolucci, P.H.F., Okamoto, I.H., 2003. Sugestões para o uso do mini exame do estado mental no Brasil. Arq Neuropsiquiatr. 61, 777–781.

Doorduijn, A.S., Visser, M., van de Rest, O., Kester, M.I., de Leeuw, F.A., Boesveldt, S., Fieldhouse, J.L.P., van den Heuvel, E.G.H.M., Teunissen, C.E., Scheltens, P., van der Flier, W.M., de van der Schueren, M.A.E., 2019. Associations of AD biomarkers and cognitive performance with nutritional status: The NUDAD project. Nutrients 11. https://doi.org/10.3390/nu11051161

Farr, O.M., Tsoukas, M.A., Mantzoros, C.S., 2015. Leptin and the brain: Influences on brain development, cognitive functioning and psychiatric disorders. Metabolism 64, 114– 130. https://doi.org/10.1016/j.metabol.2014.07.004

Folch, J., Patraca, I., Martínez, N., Pedrós, I., Petrov, D., Ettcheto, M., Abad, S., Marin, M., Beas-zarate, C., Camins, A., 2015. The role of leptin in the sporadic form of Alzheimer ’ s disease . Interactions with the adipokines amylin , ghrelin and the pituitary hormone prolactin. Life Sci. 140, 19–28. https://doi.org/10.1016/j.lfs.2015.05.002

Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. https://doi.org/10.1016/0022-3956(75)90026-6

Greco, S.J., Sarkar, S., Casadesus, G., Zhu, X., Smith, M.A., Ashford, W., Johnston, J.M., Tezapsidis, N., 2009. Leptin inhibits glycogen synthase kinase-3β to Prevent Tau Phosphorylation in neuronal cells. Neuros Lett. 455, 191–194. https://doi.org/10.1016/j.neulet.2009.03.066.Leptin

Harvey, J., 2007. Leptin : a diverse regulator of neuronal function . J. Neurochem. 100,

–313. https://doi.org/10.1111/j.1471-4159.2006.04205.x.Leptin

Ishii, X.M., Wang, G., Racchumi, G., Dyke, X.J.P., Iadecola, C., 2014. Transgenic Mice Overexpressing Amyloid Precursor Protein Exhibit Early Metabolic Deficits and a Pathologically Low Leptin State Associated with Hypothalamic Dysfunction in Arcuate Neuropeptide Y Neurons. Neurobiol. Dis. 34, 9096–9106. https://doi.org/10.1523/JNEUROSCI.0872-14.2014

Italiani, P., Puxeddu, I., Napoletano, S., Scala, E., Melillo, D., Manocchio, S., Angiolillo, A., Migliorini, P., Boraschi, D., Vitale, E., Di Costanzo, A., 2018. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: New markers of disease progression? J. Neuroinflammation 15, 1–12. https://doi.org/10.1186/s12974-018-1376-

Keller, K., Engelhardt, M., 2013. Strength and muscle mass loss with aging process . Age and strength loss. Muscles. Ligaments Tendons J. 3, 346–350.

Kim, Y.S., Lee, K.J., Kim, H., 2017. Serum tumour necrosis factor-α and interleukin-6 levels in Alzheimer’s disease and mild cognitive impairment. Psychogeriatrics 17, 224– 230. https://doi.org/10.1111/psyg.12218

Krstic, D., Knuesel, I., 2013. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 9, 25–34. https://doi.org/10.1038/nrneurol.2012.236

La Cava, A., 2017. Leptin in inflammation and autoimmunity. Cytokine 98, 51–58.

Lai, K.S.P., Liu, C.S., Rau, A., Lanctôt, K.L., Köhler, C.A., Pakosh, M., Carvalho, A.F., Herrmann, N., 2017. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 88, 876–882. https://doi.org/10.1136/jnnp-2017-316201

Leung, R., Proitsi, P., Simmons, A., Lunnon, K., Güntert, A., Kronenberg, D., Pritchard, M., Tsolaki, M., Mecocci, P., Kloszewska, I., Vellas, B., Soininen, H., Wahlund, L.O., Lovestone, S., 2013. Inflammatory Proteins in Plasma Are Associated with Severity of Alzheimer’s Disease. PLoS One 8. https://doi.org/10.1371/journal.pone.0064971

Magalhães, C.A., Carvalho, M.G., Sousa, L.P., Caramelli, P., Gomes, K.B., 2015. Leptin in Alzheimer’s disease. Clin. Chim. Acta 450, 162–168. https://doi.org/10.1016/j.cca.2015.08.009

Magalhães, C.A., Ferreira, C.N., Loures, C.M.G., Fraga, V.G., Chaves, A.C., Oliveira, A.C.R., de Souza, L.C., Resende, E. de P.F., Carmona, K.C., Guimarães, H.C., Cintra,

M.T.G., Lanna, I.N., Zauli, D.A.G., Bicalho, M.A., Carvalho, M.G., Sousa, L.P., Caramelli, P., Gomes, K.B., 2018. Leptin, hsCRP, TNF-α and IL-6 levels from normal aging to dementia: Relationship with cognitive and functional status. J. Clin. Neurosci. 56, 150–155. https://doi.org/10.1016/j.jocn.2018.08.027

Martins, I., Gomes, S., Costa, R.O., Otvos, L., Oliveira, C.R., Resende, R., Pereira, C.M.F., 2013. LEPTIN AND GHRELIN PREVENT HIPPOCAMPAL DYSFUNCTION INDUCED BY A b OLIGOMERS. Neuroscience 241, 41–51.

https://doi.org/10.1016/j.neuroscience.2013.02.062

McGregor, G., Harvey, J., 2018. Food for thought: Leptin regulation of hippocampal function and its role in Alzheimer’s disease. Neuropharmacology 136, 298–306. https://doi.org/10.1016/j.neuropharm.2017.09.038

Mejido, D.C.P., Peny, J.A., Vieira, M.N.N., Ferreira, S.T., De Felice, F.G., 2020. Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer’s disease. Neuropharmacology 171, 108115.

https://doi.org/10.1016/j.neuropharm.2020.108115

Misiak, B., Leszek, J., Kiejna, A., 2012. Metabolic syndrome , mild cognitive impairment and Alzheimer ’ s disease — The emerging role of systemic low-grade inflammation and adiposity. Brain Res. Bull. 89, 144–149. https://doi.org/10.1016/j.brainresbull.2012.08.003

Montaño, M.B.M.M., Ramos, L.R., 2005. [Validity of the Portuguese version of Clinical Dementia Rating]. Rev. Saude Publica 39, 912–7. https://doi.org//S0034- 89102005000600007

Morris, J.C., 1993. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 43, 2412–2412. https://doi.org/10.1212/WNL.43.11.2412-a

Ng, A., Tam, W.W., Zhang, M.W., Ho, C.S., Husain, S.F., McIntyre, R.S., Ho, R.C.,

IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-30487-6

Norma Técnica do Sistema de Vigilância Alimentar e Nutricional - SISVAN, 2011. Orientações para a coleta e análise de dados antropométricos em serviços de saúde.

Oomura, Y., Hori, N., Shiraishi, T., Fukunaga, K., Takeda, H., Tsuji, M., Matsumiya, T., Ishibashi, M., Aou, S., Li, X.L., Kohno, D., Uramura, K., Sougawa, H., Yada, T., Wayner, M.J., Sasaki, K., 2006. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides 27, 2738–2749. https://doi.org/10.1016/j.peptides.2006.07.001

Organización Panamericana de la Salud, 2001. Encuesta Multicéntrica SALUD BIENESTAR Y ENVEJECIMIENTO ( SABE ) EN AMÉRICA LATINA Y EL

CARIBE, in: XXXVI Reunión Del Comité Asesor de Investigaciones En Salud. pp. 1– 93.

Park, J.C., Han, S.H., Mook-Jung, I., 2020. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep. 53, 10–19. https://doi.org/10.5483/bmbrep.2020.53.1.309

Pasqualetti, G., Brooks, D.J., Edison, P., 2015. The Role of Neuroinflammation in Dementias. Curr. Neurol. Neurosci. Rep. https://doi.org/10.1007/s11910-015-0531-7

Paz-Filho, G., Mastronardi, C., Franco, C.B., Wang, K.B., Wong, M.-L., Licinio, J., 2012.

Leptin: molecular mechanisms, systemic pro-inflammatory effects, and clinical implications. Arq. Bras. Endocrinol. Metabol. 56, 597–607. https://doi.org/10.1590/s0004-27302012000900001

Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., Karagiannidou, M., 2016. World Alzheimer Report 2016 Improving healthcare for people living with dementia. Coverage, Quality and costs now and in the future. Alzheimer’s Dis. Int. 1–140.

Recomendações da Sociedade Brasileira de Patologia Clinica/Medicina Laboratorial, 2014. Coleta e Preparo da Amostra Biológica.

Riphagen, J.M., Ramakers, I.H.G.M., Freeze, W.M., Pagen, L.H.G., Hanseeuw, B.J., Verbeek, M.M., Verhey, F.R.J., Jacobs, H.I.L., 2020. Linking APOE-ε4, blood-brain barrier dysfunction, and inflammation to Alzheimer’s pathology. Neurobiol. Aging 85, 96–103. https://doi.org/10.1016/j.neurobiolaging.2019.09.020

Salinaro, A.T., Pennisi, M., Paola, R. Di, Scuto, M., Crupi, R., Cambria, M.T., Ontario, M.L., Tomasello, M., Uva, M., Maiolino, L., Calabrese, E.J., Cuzzocrea, S., Calabrese, V., 2018. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer ’ s disease and Alzheimer-linked pathologies : modulation by nutritional mushrooms. Immun. Ageing 18, 1–8. https://doi.org/10.1186/s12979-017-0108-1

Song, F., Poljak, A., Smythe, G.A., Sachdev, P., 2009. Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res. Rev. 61, 69–80. https://doi.org/10.1016/j.brainresrev.2009.05.003

Sopova, K., Paul, A., Stransky, E., Bigalke, B., Schreitmu, B., 2011. Adipocytokines and CD34 + Progenitor Cells in Alzheimer ’ s Disease. PLoS One 6, 1–7. https://doi.org/10.1371/journal.pone.0020286

Sparkman, N.L., Johnson, R.W., 2008. The Effects of Infection or Stress. Neuroimmunomodulation 15, 323–330. https://doi.org/10.1159/000156474.Neuroinflammation

Swardfager, W., Lanctôt, K., Rothenburg, L., Wong, A., Cappell, J., Herrmann, N., 2010a. A Meta-Analysis of Cytokines in Alzheimer ’ s Disease. Biol Psychiatry 68, 930– 941. https://doi.org/10.1016/j.biopsych.2010.06.012

Swardfager, W., Lanctt, K., Rothenburg, L., Wong, A., Cappell, J., Herrmann, N., 2010b. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry 68, 930–941. https://doi.org/10.1016/j.biopsych.2010.06.012

Tamaoka, A., 2011. Alzheimer’s disease: definition and National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA). Nihon Rinsho. 69, 240–245.

Teixeira, A.L., Reis, H.J., Coelho, F.M., Carneiro, D.S., Teixeira, M.M., Vieira, L.B., Mukhamedyarov, M.A., Zefirov, A.L., Janka, Z., Palotás, A., 2008. All-or-Nothing Type Biphasic Cytokine Production of Human Lymphocytes After Exposure to Alzheimer ’ s. Biol Psychiatry 64, 891–895. https://doi.org/10.1016/j.biopsych.2008.07.019

Thambisetty, M., Lovestone, S., 2010. Blood-based biomarkers of Alzheimer’s disease: challenging but feasible. Biomark. Med. 4, 65–79. https://doi.org/10.2217/bmm.09.84

Tuppo, E.E., Arias, H.R., 2005. The role of inflammation in Alzheimer ’ s disease. Int. J. Biochem. Cell Biol. 37, 289–305. https://doi.org/10.1016/j.biocel.2004.07.009

Vellas, B., Villars, H., Abellan, G., Soto, M.E., Rolland, Y., Guigoz, Y., Morley, J.E., Chumlea, W., Salva, A., Rubenstein, L.Z., Garry, P., 2006. Overwiew of the MNA® – Its history and chalenges. J. Nutr. Heal. Aging 10, 456–465.

Wichmann, M.A., Cruickshanks, K.J., Carlsson, C.M., Chappell, R., Fischer, M.E., Schubert, C.R., 2014. Long-Term Systemic Inflammation and Cognitive Impairment in a Population-Based Cohort. JAGS 62, 1683–1691. https://doi.org/10.1111/jgs.12994

Witte, A.V., Köbe, T., Graunke, A., Schuchardt, J.P., Hahn, A., Tesky, V.A., Pantel, J., Flöel, A., 2016. Impact of leptin on memory function and hippocampal structure in mild cognitive impairment. Hum. Brain Mapp. 37, 4539–4549. https://doi.org/10.1002/hbm.23327

Zhan, X., Stamova, B., Sharp, F.R., 2018. Lipopolysaccharide Associates with Amyloid Plaques , Neurons and Oligodendrocytes in Alzheimer ’ s Disease Brain : A Review. Front. Aging Neurosci. 10, 1–14. https://doi.org/10.3389/fnagi.2018.00042

Zhang, Y., Chua, S., 2018. Leptin function and regulation. Compr. Physiol. 8, 351–369. https://doi.org/10.1002/cphy.c160041

Zheng, C., Zhou, X., Wang, J., 2016. The dual roles of cytokines in Alzheimer ’ s disease : update on interleukins , TNF- α , TGF- β and IFN- γ. Transl. Neurodegener. 5, 1–15. https://doi.org/10.1186/s40035-016-0054-4




DOI: https://doi.org/10.34117/bjdv.v7i5.29525

Refbacks

  • There are currently no refbacks.