Influence of the Methodology Applied in the Formation Process of VOx / Polyaniline Nanocomposites / Influência da Metodologia Aplicada no Processo de Formação de Nanocompósito VOx / Polianilina

Luiz Henrique Silva, Bruna Rosa da Silva Santos, Fabiana da Silva Castro, Arnaud Victor dos Santos

Abstract


The present work discusses the synthesis, characterization and thermoanalytical investigation of the hybrid material based on c-V2O5 and substituted polyanilines. 50 mL of an aqueous suspension with 0.5 g of oxide (2.75 mmol) in three concentrations of 2-methylaniline and 2-propylaniline (1.07 mmol, 5.49 mmol and 10.97 mmol) was prepared and submitted to high intensity pulse ultrasound. The goal was the investigation of the effect of the organic component used to modify the physical-chemical properties of the c-V2O5 by using TG-DTA, DSC, FTIR, DRX and SEM measurements. The results showed a higher degree of intercalation process for Poly (2-propylaniline) as well as a larger basal distance for same hybrid material.


Keywords


Nanohybrides VOx/Poly(substituted), sonochemistry, thermoanalytical investigation.

Full Text:

PDF

References


Braithwaite, J. S., Catlow, C. R. A., Gale, J. D., & Harding, J. H. (1999). Lithium intercalation into vanadium pentoxide: a theoretical study. Chemistry of Materials, 11 (8), 1990 – 1998.

https://doi.org/10.1021/cm980735r

Canepa, P., Gautam, S. G., Hannah, D. C, Malik, R., Liu, M., Gallagher, K. G.,. . . Ceder, G. (2017). Odyssey of multivalent cathode materials: open questions and future challenges. Chemical Reviews, 117 (5), 4287 – 4341.

https://doi.org/10.1021/acs.chemrev.6b00614

Channu, V. S. R., Holze, R., Rambabu, B., Kalluru, R. R., Williams, Q. L., & Wen, C. (2010). Reduction of V4+ from V5+ using polymer as a surfactant for electrochemical applications. International Journal of Electrochemical Science, 5, 605 – 614.

Cheng, Y., Shao, Y., Raju, V., Ji, X., Mehdi, B. L, Han, K. S., . . . Liu, J. (2016). Molecular storage of Mg ions with vanadium oxide nanoclusters. Advanced Functional Materials, 26 (20), 3446 – 3453.

https://doi.org/10.1002/adfm.201505501

Englebienne, P., & Hoonacker, A. V. (2005). Gold–conductive polymer nanoparticles: A hybrid material with enhanced photonic reactivity to environmental stimuli. Journal of Colloid and Interface Science, 292 (2), 445 – 454.

https://doi.org/10.1016/j.jcis.2005.06.001

Gautam, G. S., Canepa, P., Richards, W. D., Malik, R., & Ceder, G. (2016). Papel de H2O estrutural em eletrodos de intercalação: o caso de Mg em xerogel-V2O5 nanocristalino. Nano Letters, 16 (4), 2426 – 2431.

https://doi.org/10.1021/acs.nanolett.5b05273

Huang, H., Chen, L., Wang, S., Kang, P., Chen, X., Guo, Z., & Huang, X. J. (2019). Electrochemical monitoring of persistent toxic substances using metal oxide and its composite nanomaterials: Design, preparation, and application. Trends in Analytical Chemistry, 119, 1 – 14.

https://doi.org/10.1016/j.trac.2019.115636

Huguenin, F., & Torresi, R. M. (2008). Investigation of the electrical and electrochemical properties of nanocomposites from V2O5, polypyrrole, and polyaniline. The Journal of Physical Chemistry C, 112 (6), 2202 – 2209.

https://doi.org/10.1021/jp0758622

Lira-Cantu, M., & Gomez-Romero, P. (1999). The polyaniline–V2O5 system: improvement as insertion electrode in lithium batteries. International Journal of Inorganic Materials, 1 (1), 111–116.

https://doi.org/10.1016/S1463-0176(99)00017-4

Liu, Q. H, Grim, G. M, Papandrew, A. B, Turhan, A., Zawodzinski, T. A, & Mench, M. M. (2012). High performance vanadium redox fow batteries with optimized electrode confguration and membrane selection. Journal of The Electrochemical Society, 159 (8), A1246 – A1252.

https://doi.org/10.1149/2.051208jes

Livage, J. (1992). Sol-gels ionics. Solid State Ionics, 50, 307 – 313.

Majumdar, D., & Ghosh, S. (2021). Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 34, 1 – 43.

https://doi.org/10.1016/j.est.2020.101995

Malta, M., Silva, L. H., Galembeck, A., & Korn, M. (2008). Ultrasound-Assisted Synthesis of Hybrid Vanadium Oxide/Polyaniline Nanowires Macromol. Rapid commum, 29 (14), 1221 – 1225.

https://doi.org/10.1002/marc.200800140

Massé, R. C., Uchaker, E., & Cao, G. (2015). Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Science China Materials, 58 (9), 715 – 766. https://doi.org/10.1007/s40843-015-0084-8

Meng, S., Yan, W., Ma, X., Sun, D., Jin, Y., & He, K. (2019). Hierarchical structured Mn2O3 nanomaterials with excellent electrochemical properties for lithium ion batteries, RSC Advances, 9 (3), 1284 – 1289.

https://doi.org/10.1039/C8RA08985J

Oliveira, S. C., Torresi, R. M., & Torresi, S. I. C. (2000). Uma visão das tendências e perspectivas em Eletrocromismo: A Busca de novos materiais e desenhos mais simples. Química Nova, 23 (1), 79 – 87.

https://doi.org/10.1590/S0100-40422000000100014

Romero, P. G. (2001) Hybrid Organic-Inorganic Materials In Search of Synergic Activity. Advaced Materials, 13 (3), 163 – 174.

https://doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U

Schoiswohl, J., Surnev, S., Netzer, F. P., & Kresse, G. (2006). Vanadium oxide nanostructures: from zero- to three-dimensional. Journal of Physics: Condensed Matter, 18 (4), R1 – R14.

http://dx.doi.org/10.1088/0953-8984/18/4/R01

Shao, L., Jeon, J.W., & Lutkenhaus, J.L. (2013). Porous polyaniline nanofiber/vanadium pentoxide layer-by-layer electrodes for energy storage. Journal of Materials Chemistry A, 1 (26), 7648 – 1756.

https://doi.org/10.1039/C3TA10961E

Shirakawa, H., Louis, E. J., Macdiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers – halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society-Chemical Communications, 16, 578 – 580.

https://doi.org/10.1039/C39770000578

Tang, H., Peng, Z., Wu, L., Xiong, F., Pei, C., An, Q., & Mai, L. (2018). Vanadium Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochemical Energy Reviews, 1 (2), 169 – 199.

https://doi.org/10.1007/s41918-018-0007-y

Xia, Y., Zhang, H., Huang, P., Huang, C., Xu, F., Zou, Y.,...Sun, L. (2019). Graphene-oxide-induced lamellar structures used to fabricate novel composite solid-solid phase change materials for thermal energy storage. Chemical Engineering Journal, 362, 909 – 920.

https://doi.org/10.1016/j.cej.2019.01.097

Zarbin, A. J. G. (2007). Química de (nano) materiais. Química Nova, 30 (6), 1472 – 1474.

http://dx.doi.org/10.1590/S0100-40422007000600016




DOI: https://doi.org/10.34117/bjdv.v7i5.29454

Refbacks

  • There are currently no refbacks.