Accessible technologies for kinetic and kinematic analysis of people with disabilities: a literature review/ Tecnologias acessíveis para análise cinética e cinemática da pessoa com deficiência: uma revisão da literatura

Jordana S. R. Martins, Ivo Z. L Meyer, Diego H. A. Nascimento, Isabella S. D. Menin, George Sabino, Welbert L Vieira, Nathália A. Gomes, Claysson, B. S Vimieiro

Abstract


Locomotion is the process by which a being moves from one place to another, including stopping, changing speed, changes in direction and adaptation to changes in terrain. Human walking follows a pattern, and it is one of the forms of locomotion that most calls the attention of researchers. Its variation among a group may indicate pathological conditions that influence the treatment and rehabilitation of patients with low mobility. The objective of this article is to carry out a review for the development of a low-cost instrumented treadmill that can assist in the rehabilitation, treatment and follow-up of patients with stroke, and for that, a search of articles related to the topic was carried out in databases such as ScienceDirect, PubMed and others. The results obtained were satisfactory and enabled the creation of a good database. It was possible to conclude that there is a diversity of existing resources and that it is up to the professionals to direct their choice to the one that suits them best.


Keywords


instrumented treadmill, rehabilitation, stroke, human gait.

Full Text:

PDF

References


ADACHI, W.; TSUJIUCHI, N.; KOIZUMI, T.; SHIOJIMA, K.; TSUCHIYA, Y.; INOUE, Y. (2012). Development of walking analysis system using by motion sensor with mobile force plate. Journal of System Desicom and Dynamics, 6(5), 655-664.

ALBERT, J. A.; OWOLABI, V.; GEBEL, A.; BRAHMS, C. M.; GRANACHER, U.; ARNRICH, B. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study. Sensors, 20(18), 5104, 2020.

ALBUQUERQUE, C. A.; BESSA, Y. S. Desenvolvimento de uma plataforma de força para o estudo do equilíbrio humano. Monograph (Bachelor of Electronic Engineering) University of Brasilia, Brasília, 2015.

ARAUJO, P. D. A. Analisando técnicas de captura de movimento, Universidade Federal Fluminense, Niterói -RJ, 2015.

BARELA, A. Utilização da plataforma de força para aquisição de dados cinéticos durante a marcha humana. Brazilian Journal of Motor Behavior, v. 6, p. 56–61, 2011.

BORENSTEIN, G.; ODEWAHN, A.; JEPSON, B. Making things see: 3D vison with Kinect, Processing, Arduino, and MakerBot. O’Reilly Media, 2012.

BONNECHERE, B.; JANSEN, B.; SALVIA, P.; BOUZAHOUENE, H.; OMELINA, L.;MOISEEV, F.; SHOLUKHA, V.; CORNELIS, J.; ROOZE, M.; JAN, S. V. S. Validity and reliability of the kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait & posture, Elsevier, v. 39, n. 1, p. 593–598, 2014.

CALDAS, R.; MUNDT, M.; POTTHAST, W.; NETO, F. B. de L.; MARKERT, B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait &posture, Elsevier, v. 57, p. 204–210, 2017.

CAO, Y.; LI, B. ; LI, Q ; XIE, J. ; CAO, B. ; YU, S. Kinect‐based gait analyses of patients with Parkinson's disease, patients with stroke with hemiplegia, and healthy adults. Neuroscience & Therapeutics, May 2017, Vol.23(5), pp.447-449

CLARK, R. A.; MENTIPLAY, B. F.; HOUGH, E.; PUA, Y. H. Three-dimensional camerasand skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and kinect alternatives. Gait & posture, Elsevier, v. 68, p. 193–200, 2019.

DUARTE, C. T.; ROQUETTE, P. C. C.; DURÃO, C.R.C.; LIMA, K. G.; OLIVEIRA, R. L. Multiple Linear Regression Method Applied in Calibration of Inertial Sensors. Brazilian Journal of Development. Curitiba, v. 6, n.10, p. 75363-75371, oct. 2020

DUBOIS, A.; BRESCIANI, J.-P. Validation of an ambient system for the measurement of gait parameters. Journal of biomechanics, Elsevier, v. 69, p. 175–180, 2018.

ELTOUKHY, M.; KUENZE, C.; OH, J.; JACOPETTI, M.; WOOTEN, S.; SIGNORILE, J. Microsoft kinect can distinguish differences in over-ground gait between older persons withand without parkinson’s disease. Medical engineering & physics, Elsevier, v. 44, p. 1–7, 2017.

EDGINTON, K. A.; GÜLER, H. C.; OBER, J. J.; BERME, N. Instrumented Treadmills: Reducing the need for gait labs. CMBES Proceedings, v. 30, 2007.

FORNER-CORDERO, A.; KOOPMAN, H.; HELM, F. Van der. Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait &posture, Elsevier, v. 23, n. 2, p. 189–199, 2006.

FREEDMAN, B.; SHPUNT, A.; MACHLINE, M.; ARIELI, Y. Depth mapping using projected patterns. Google Patents, 2012.

HONG, C.-Y.; GUO, L.-Y.; SONG, R.; NAGURKA, M. L.; SUNG, J.-L.; YEN, C.-W. Developing a low-cost force treadmill via dynamic modeling. Journal of healthcare engineering, Hindawi, v. 2017, 2017.

KHOSHELHAM, K.; ELBERINK, S. O. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, v. 12, n. 2, p. 1437-1454, 2012.

KOZLOW, P.; ABID, N.; YANUSHKEVICH, S. Gait type analysis using dynamic bayesian networks. Sensors, Multidisciplinary Digital Publishing Institute, v. 18, n. 10, p. 3329, 2018.

LATORRE, J.; LLORENS, R.; COLOMER, C.; ALCAÑIZ, M. Reliability and comparison of kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Journal of biomechanics, Elsevier, v. 72, p. 268–273, 2018.

LIU, T.; INOUE Y.; SHIBATA, K.; SHIOJIMA, K. A Mobile Force Plate and Three-Dimensional Motion Analysis System for Three-Dimensional Gait Assement. IEEE Sensor Journal, v. 12, 1461, 2012.

MIZRAHI, J.; SUSAK, Z.; HELLER, L.; NAJENSON, T. Variation of time distance parameters of the stride as related to clinical gait improvement in hemiplegics. Scandinavian Journal Rehabilitation Medical, v. 14, p. 133-140, 1982.

MÜLLER, B.; ILG, W.; GIESE, M. A.; LUDOLPH, N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PloS one, Public Library of Science, v. 12, n. 4, p.e0175813, 2017.

PFISTER, A., WEST, A. M.; BRONNER, S.; NOAH, J. A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. Journal Medical Engineering Technology, 2014; 38(5): 274–280

PINHEIRO, A. P.; SANTOS, S. S.; PEREIRA, A. A.; ANDRADE, A. O. Sistema óptico-eletrônico para reconstrução tridimensional do movimento humano e quantificação de sua cinemática articular. Revista Brasileira de Biomecânica, v. 14, n. 27, 2013.

QUADROS, E. A. R.; GIACOMOLLI, A. A. Proposal for an optoelectronic sensor for gait analysis. Brazilian Journal of Development. Curitiba, v. 6, n. 5, p. 30698-30719, may. 2020.

RILEY, P. O.; DICHARRY, J.; FRANZ, J.; CROCE, U. D.; WILDER, R. P.; KERRIGAN D. C. A Kinematics and Kinetic Comparison of Over ground and Treadmill Running. Official Journal of the American College of Sports Medicine, p. 1093 -1100, 2013.

RODOWANSKI, I. J. Plataforma de foça instrumentada: uma ferramenta aplicada a estudos de posturologia. Master's Dissertation, Federal University of Bahia, Salvador, 2011.

SABATINI, A. M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Transactions on Biomedical Engineering, v. 53, p. 1346-1356, 2006.

SLOOT, L. H.; HOUDIJK, H.; HARLAAR, J. A comprehensive protocol to test instrumented treadmills. Medical engineering & physics, v. 37, n. 6, p. 610-616, 2015.WATT, J. R., FRANZ, J. R., JACKSON, K., DICHARRY, J., RILEY, P. O.,and KERRIGAN, D. C. (2010). A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. WILLEMS, P. A.; GOSSEYE, T. P. Does an instrumented treadmill correctly measure the ground reaction forces? Biology Open 2, 1421-1424, 2013.

WU, G.; VAN DER HELM, F. C.; VEEGER, H. D.; MAKHSOUS, M.; et.al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of biomechanics, 38(5), 981-992, 2005.

WU, G.; SIEGLER, S.; ALLARD, P.; KIRTLEY, C.; LEARDINI, A.; ROSENBAUM, D.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of biomechanics, 35(4), 543-548, 2002.

ZOHAR, et al. Method for real time interactive visualization of muscle forces and joint torques in the human body. US 7, 931, 604 B2. USA, 2011. Google Patents




DOI: https://doi.org/10.34117/bjdv.v7i5.29287

Refbacks

  • There are currently no refbacks.