Influência da taxa de resfriamento no processo de boretação em aço 0,4%C / Influence of cooling rate on boretizing process in 0.4%C steel

Authors

  • Fernando Grazziotin Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Cínthia Gabriely Zimmer
  • Débora Stefani Maciel

DOI:

https://doi.org/10.34117/bjdv7n3-675

Keywords:

Boretação, Aço 0, 4%C, Aço ABNT/SAE/AISI 1040, Resfriamento.

Abstract

Foi realizado o tratamento termoquímico de boretação em um aço 0,4%C. O banho foi composto por 73,66% de borato de sódio, 24,46% de carbeto de silício e 1,88% de cloreto de sódio, sendo todos valores em massa. O tratamento ocorreu à temperatura de 1000°C e teve a duração de 12 horas. Uma das amostras foi resfriada ao ar, enquanto a outra ao óleo. As amostras foram cortadas transversalmente para avaliar a espessura e morfologia da camada boretada através de metalografia, além da medição do perfil de dureza Vickers. A difusão da camada foi levemente maior na amostra submetida ao resfriamento natural ao ar (média de 47,16µm), enquanto a dureza mais elevada foi identificada na amostra resfriada no óleo (614 HV). Foi gerada uma camada porosa nas duas amostras.

References

BARBIERI, Fernando Cruz. FILMES INTERMEDIÁRIOS PARA A DEPOSIÇÃO DE. [s. l.], 2007.

BICAN, Osman et al. Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of aisi 5140 steel. Surface Review and Letters, [s. l.], v. 27, n. 6, p. 1–9, 2019. Disponível em: https://doi.org/10.1142/S0218625X19501579

BRASIL. Portaria No 240, De 12 De Março De 2019. Diário Oficial Da União, [s. l.], v. Seção 1, n. Edição 50, p. 41-58 (p. 44), 2019. Disponível em: https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=14/03/2019&jornal=515&pagina=41

BRASILEIRA, Norma; NBR, Abnt. e composição química Aço carbono e ligados para construção mecânica - Designação e composição química. [s. l.], 2004.

CAMPOS-SILVA, I. et al. Characterization of AISI 4140 borided steels. Applied Surface Science, [s. l.], v. 256, n. 8, p. 2372–2379, 2010. Disponível em: https://doi.org/10.1016/j.apsusc.2009.10.070

DAI, Mingyang; LI, Chaoyu; HU, Jing. The enhancement effect and kinetics of rare earth assisted salt bath nitriding. Journal of Alloys and Compounds, [s. l.], v. 688, p. 350–356, 2016. Disponível em: https://doi.org/10.1016/j.jallcom.2016.07.189

DE OLIVEIRA, Pedro Gabriel Bonella et al. Boro-Austempering Treatment of High-Strength Bainitic Steels. Journal of Materials Engineering and Performance, [s. l.], v. 29, n. 6, p. 3486–3493, 2020. Disponível em: https://doi.org/10.1007/s11665-020-04590-7

GÖK, Mustafa Sabri et al. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures. Surface and Coatings Technology, [s. l.], v. 328, p. 54–62, 2017. Disponível em: https://doi.org/10.1016/j.surfcoat.2017.08.008

GU, Junfeng et al. Reactive sintering of B4C-TaB2 ceramics via carbide boronizing: Reaction process, microstructure and mechanical properties. Journal of Materials Science and Technology, [s. l.], v. 35, n. 12, p. 2840–2850, 2019. Disponível em: https://doi.org/10.1016/j.jmst.2019.04.029

GUTIERREZ-NODA, L. et al. The effect of a boride diffusion layer on the tribological properties of AISI M2 steel. Wear, [s. l.], v. 426–427, n. January, p. 1667–1671, 2019. Disponível em: https://doi.org/10.1016/j.wear.2019.01.089

HE, Xingliang et al. Low-temperature boriding of high-carbon steel. Surface and Coatings Technology, [s. l.], v. 263, p. 21–26, 2015. Disponível em: https://doi.org/10.1016/j.surfcoat.2014.12.071

KAYALI, Yusuf. Investigation of diffusion kinetics of borided AISI P20 steel in micro-wave furnace. Vacuum, [s. l.], v. 121, p. 129–134, 2015. Disponível em: https://doi.org/10.1016/j.vacuum.2015.08.006

KRISHNA KANTH, V. et al. Experimental investigation of cutting parameters using nano lubrication on turning AISI 1040 steel. Materials Today: Proceedings, [s. l.], v. 18, p. 2095–2101, 2019. Disponível em: https://doi.org/10.1016/j.matpr.2019.06.323

KUL, M. et al. Effect of boronizing composition on hardness of boronized AISI 1045 steel. Materials Letters, [s. l.], v. 279, p. 128510, 2020. Disponível em: https://doi.org/10.1016/j.matlet.2020.128510

KULKA, Michal. Current Trends in Boriding. [S. l.: s. n.], 2019. v. 1E-book.

KUSMANOV, S. A. et al. Anode plasma electrolytic boriding of medium carbon steel. Surface and Coatings Technology, [s. l.], v. 291, p. 334–341, 2016. Disponível em: https://doi.org/10.1016/j.surfcoat.2016.02.062

MELÉNDEZ, E. et al. Structural and strength characterization of steels subjected to boriding thermochemical process. Materials Science and Engineering A, [s. l.], v. 234–236, p. 900–903, 1997. Disponível em: https://doi.org/10.1016/s0921-5093(97)00389-4

MORÓN, R. C. et al. Friction and Reciprocating Wear Behavior of Borided AISI H13 Steel Under Dry and Lubricated Conditions. Journal of Materials Engineering and Performance, [s. l.], v. 29, n. 7, p. 4529–4540, 2020. Disponível em: https://doi.org/10.1007/s11665-020-04957-w

OULADSAAD, Sofiane; ALLAOUI, Omar; DAAS, Ahmed. Boro-aluminizing of XC38 steel. Indian Journal of Chemical Technology, [s. l.], v. 26, n. 3, p. 239–243, 2019.

OZBEK, Ibrahim; BINDAL, Cuma. Mechanical properties of boronized AISI W4 steel. Surface and Coatings Technology, [s. l.], v. 154, n. 1, p. 14–20, 2002. Disponível em: https://doi.org/10.1016/S0257-8972(01)01409-8

PADMINI, R.; VAMSI KRISHNA, P.; KRISHNA MOHANA RAO, G. Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International, [s. l.], v. 94, p. 490–501, 2016. Disponível em: https://doi.org/10.1016/j.triboint.2015.10.006

POŽEGA, Emina; IVANOV, Svetlana Lj.; IVANOVI?, Aleksandra. Influence different chemical composition and percentage rate of added activators on depth of boride layer. Zaštita materijala, [s. l.], v. 50, n. 2, p. 99–104, 2009.

PRINCE, M. et al. Experimental Investigations on the Effects of Multicomponent Laser Boriding on steels. Materials Today: Proceedings, [s. l.], v. 5, n. 11, p. 25276–25284, 2018. Disponível em: https://doi.org/10.1016/j.matpr.2018.10.330

?AHIN, Salim. Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. Journal of Materials Processing Technology, [s. l.], v. 209, n. 4, p. 1736–1741, 2009. Disponível em: https://doi.org/10.1016/j.jmatprotec.2008.04.040

SELÇUK, B.; IPEK, R.; KARAMI?, M. B. A study on friction and wear behaviour of carburized, carbonitrided and borided AISI 1020 and 5115 steels. Journal of Materials Processing Technology, [s. l.], v. 141, n. 2, p. 189–196, 2003. Disponível em: https://doi.org/10.1016/S0924-0136(02)01038-5

SELVAKUMAR, N.; MALKIYA RASALIN PRINCE, R. Microstructure, surface topography and sliding wear behaviour of titanium based coating on AISI 1040 steel by magnetron sputtering. Archives of Civil and Mechanical Engineering, [s. l.], v. 17, n. 2, p. 281–292, 2017. Disponível em: https://doi.org/10.1016/j.acme.2016.10.005

SUN, Jian et al. Effect of boron segregation on the surface crack of low carbon boron-bearing steel. Results in Physics, [s. l.], v. 13, n. November 2018, p. 102153, 2019. Disponível em: https://doi.org/10.1016/j.rinp.2019.02.089

TRIANI, Rafael Magalhães et al. Production and Characterization of Boride and Carbide Layers on AISI 15B30 Steel. Journal of Materials Engineering and Performance, [s. l.], v. 29, n. 6, p. 3534–3541, 2020. Disponível em: https://doi.org/10.1007/s11665-020-04698-w

TÜRKMEN, ?lyas; YALAMAÇ, Emre. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method. Journal of Alloys and Compounds, [s. l.], v. 744, p. 658–666, 2018. Disponível em: https://doi.org/10.1016/j.jallcom.2018.02.118

TÜRKMEN, ?lyas; YALAMAÇ, Emre; KEDDAM, Mourad. Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel. Surface and Coatings Technology, [s. l.], v. 377, n. May, 2019. Disponível em: https://doi.org/10.1016/j.surfcoat.2019.08.017

USLU, I. et al. A comparison of borides formed on AISI 1040 and AISI P20 steels. Materials and Design, [s. l.], v. 28, n. 6, p. 1819–1826, 2007. Disponível em: https://doi.org/10.1016/j.matdes.2006.04.019

Published

2021-03-25

How to Cite

Grazziotin, F., Zimmer, C. G., & Maciel, D. S. (2021). Influência da taxa de resfriamento no processo de boretação em aço 0,4%C / Influence of cooling rate on boretizing process in 0.4%C steel. Brazilian Journal of Development, 7(3), 30642–30652. https://doi.org/10.34117/bjdv7n3-675

Issue

Section

Original Papers