Numerical Modeling of a Reinforced Concrete Beam’s Vibration / Modelagem Numérica da Vibração de uma Viga de Concreto Armado

Authors

  • Leonardo Andretta Lobo
  • Elvidio Gavassoni Neto
  • Amanda Jarek
  • Marcos Antônio Teixeira Neri
  • Rodrigo Augusto do Nascimento Gomes

DOI:

https://doi.org/10.34117/bjdv7n3-363

Keywords:

Structural Health Monitoring, Finite Element, Reinforced Concrete, Modal Analysis, Vibration.

Abstract

Structural Health Monitoring (SHM) can be vastly used to verify the state of a structure, avoiding the need of destructive tests to do so. One of the many ways to perform SHM is by obtaining and evaluating modal parameters (natural frequencies and mode shapes) of a certain structure, collected by dynamic tests, and compare them to pre-estabilished values for non-damaged structures. Such monitoring can be performed with a reduced maintenance cost in the electricity distribution network, which presents a high number of reinforced concrete (RC) light poles. This paper is part of a program that seeks to develop a methodology of structural health monitoring of reinforced concrete light poles using experimental modal analysis (EMA), and since one of the first steps for this is the validation of the structural model, it intends to design a numerical model in a Finite Element (FE) software (ANSYS) of a laboratory tested reinforced concrete beam, and compare the modal parameters numerically, experimentally and analitically obtained. The model considers the behaviour of reinfored concrete, a composite material, and the free-free boundary conditions identical to the ones used in the laboratory tests. The comparative results between the numerical models and experimental tests are satisfatory in such way that they validate the model as proper in the attainment of reinforced concrete light poles’s modal parameters.

References

Clough, R. W., & Penzien, J. (2003). Dynamics of Structures. Dynamics of Structures, 752. https://doi.org/10.1002/9781118599792

Figueiredo, F. B., Figueiredo, N. L. B., Mello, A. F. A., Souza, L. A. F., & Vanalli, L. (2020). Determinação numérica e experimental da frequência natural de vigas de concreto armado. Brazilian Journal of Development, 6(4), 17931–17946. https://doi.org/10.34117/bjdv6n4-095

J.L.Humar. (2001). Dynamics of Structures. A A Balkema Publishers.

Meirovitch, L. (2001). Meirovitch Leonard Fundamentals of Vibrations.

Oliveira, D. C., Chavarette, F. R., & Lima, F. P. dos A. (2020). Structural Health Monitoring using Artificial Immune System. Brazilian Journal of Development, 6(4), 16948–16963. https://doi.org/10.34117/bjdv6n4-022

Silva, J. N., Rodrigues, A. D., Dias, T. da C., & Brito, J. N. (2019). Análise estrutural de um chassi tubular através das técnicas de ODS e análise de vibração. Brazilian Journal of Development, 5(6), 6213–6231. https://doi.org/10.34117/bjdv5n6-130

Zheng, L., Huo Sharon, X., & Yuan, Y. (2008). Experimental investigation on dynamic properties of rubberized concrete.pdf.

Zong, Z., Lin, X., & Niu, J. (2015). Finite element model validation of bridge based on structural health monitoring—Part I: Response surface-based finite element model updating. Journal of Traffic and Transportation Engineering (English Edition), 2(4), 258–278. https://doi.org/10.1016/j.jtte.2015.06.001

ANSYS Workbench for Windows, version 18.1: Finite Element software.

Published

2021-03-15

How to Cite

Lobo, L. A., Neto, E. G., Jarek, A., Neri, M. A. T., & Gomes, R. A. do N. (2021). Numerical Modeling of a Reinforced Concrete Beam’s Vibration / Modelagem Numérica da Vibração de uma Viga de Concreto Armado. Brazilian Journal of Development, 7(3), 26273–26285. https://doi.org/10.34117/bjdv7n3-363

Issue

Section

Original Papers