Environmental performance for microalgae cultivation commercial systems: sustainability metrics and indicators / Desempenho ambiental para sistemas comerciais de cultivo de microalgas: métricas e indicadores de sustentabilidade

Mariany Costa Deprá, Patrícia Arrojo da Silva, Rosangela Rodrigues Dias, Rafaela Basso Sartori, Paola Lasta, Leila Queiroz Zepka, Eduardo Jacob-Lopes


In this study, we evaluated metrics and sustainability indicators for cultivation commercial systems based on microalgae. Cultivation systems as a raceway pond, tubular photobioreactor, flat plate photobioreactor, and fermenter were evaluated under a standard functional unit of 1 m³. These cultivation systems were estimated by midpoint indicators through the nine impact categories and later submitted to the normalization phase. Among the results found, three impact categories were shown to be more expressive to contribute to environmental impacts for the four cultivation systems, which are ecotoxicity potential, energy resource, and global warming potential. The best environmental performance was identified for raceway pond, although the worst-case scenario for the water footprint category was identified. Besides, in a comparative analysis between closed systems, fermenters showed better environmental indicators, followed by tubular and flat plate photobioreactors. In this way, the life cycle assessment allowed to highlight the hot points of the process, identifying the energy requirements as the critical points of the whole performance of the cultivation systems. Finally, regardless of the impacts associated with different cultivation configurations, it is important to note that the choice of the system will be directly associated with the target product to be produced. Therefore, the results found about the environmental performance of cultivation systems can serve as basic information to reduce the global environmental impacts of microalgae-based processes and bioproducts.



biomass, raceway pond, tubular photobioreactor, flat plate photobioreactor, fermenter, life-cycle assessment.

Full Text:



Albarelli, J. Q., Santos, D. T., Ensinas, A. V., Marechal, F., Cocero, M. J., & Meireles, M. A. A. (2018). Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: Thermal and economic analysis. Renewable energy, 129, 776-785. DOI: 10.1016/j.renene.2017.05.022

Bhattacharya, M., & Goswami, S. (2020). Microalgae–A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, 101580. DOI: 10.1016/j.bcab.2020.101580

Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., ... & Bondioli, P. (2013). Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Applied Energy, 102, 101-111. DOI: 10.1016/j.apenergy.2012.07.040

Corona, B., Shen, L., Reike, D., Carreón, J. R., & Worrell, E. (2019). Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resources, Conservation and Recycling, 151, 104498.DOI: 10.1016/j.resconrec.2019.104498.

Cruce, J. R., Beattie, A., Chen, P., Quiroz, D., Somers, M., Compton, S., ... & Quinn, J. C. (2021). Driving toward sustainable algal fuels: A harmonization of techno-economic and life cycle assessments. Algal Research, 54, 102169. DOI: 10.1016/j.algal.2020.102169

Deprá, M. C., Mérida, L. G., de Menezes, C. R., Zepka, L. Q., & Jacob-Lopes, E. (2019). A new hybrid photobioreactor design for microalgae culture. Chemical Engineering Research and Design, 144, 1-10. DOI:10.1016/j.cherd.2019.01.023

Deprá, M. C., Severo, I. A., Dias, R. R., Zepka, L. Q., & Jacob-Lopes, E. (2021). Photobioreactor design for microalgae culture. In Microalgae (pp. 35-61). Academic Press. DOI: 10.1016/B978-0-12-821218-9.00002-5

Deprá, M. C., Severo, I. A., dos Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2020). Environmental impacts on commercial microalgae-based products: Sustainability metrics and indicators. Algal Research, 51, 102056. DOI: 10.1016/j.algal.2020.102056

Erbland, P., Caron, S., Peterson, M., & Alyokhin, A. (2020). Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production. Aquacultural Engineering, 90, 102103. DOI:10.1016/j.aquaeng.2020.102103

Fitzpatrick, J. J., de Lima, K. G., & Keller, E. (2017). Application of mathematical modelling for investigating oxygen transfer energy requirement and process design of an aerobic continuous stirred tank fermenter. Food and bioproducts processing, 103, 39-48. DOI: 10.1016/j.fbp.2017.02.009

Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126.

Hauschild, M. Z., Wenzel, H. (1998). Environmental Assessment of Products. Volume 2: Scientific Background. 1st edition, Springer US, 566p.

Heinrich, A. B. (2010). International reference life cycle data system handbook. The International Journal of Life Cycle Assessment, 15(5), 524-525.

Hoekstra, A. Y. (2016). A critique on the water-scarcity weighted water footprint in LCA. Ecological indicators, 66, 564-573. DOI: 10.1016/j.ecolind.2016.02.026

Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3(3), 318-329.DOI: 10.1016/J.ENG.2017.03.020

Hussain, F., Shah, S. Z., Ahmad, H., Abubshait, S. A., Abubshait, H. A., Laref, A., & Iqbal, M. (2021). Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews, 137, 110603. DOI: 10.1016/j.rser.2020.110603

ISO (International Organization for Standardization), 2006. ISO 14040:2006(E) Environmental Management – Life Cycle Assessment – Principles and Framework.

Kirnev, P. C. S., Carvalho, J. C., Vandenberghe, L. P. S., Karp, S. G., & Soccol, C. R. (2020). Technological mapping and trends in photobioreactors for the production of microalgae. World Journal of Microbiology and Biotechnology, 36(3), 1-9.DOI: 10.1007/s11274-020-02819-0

Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J. W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875-885. DOI: 10.1016/j.rser.2015.06.033

Kumar, L. R., Yellapu, S. K., Zhang, X., Tyagi, R. D. (2019). Energy balance for biodiesel production processes using microbial oil and scum. Bioresource technology, 272, 379-388. DOI: 10.1016/j.biortech.2018.10.071

Laratte, B., Guillaume, B., Kim, J., Birregah, B. (2014). Modeling cumulative effects in life cycle assessment: The case of fertilizer in wheat production contributing to the global warming potential. Science of The Total Environment, 481, 588-595. DOI: 10.1016/j.scitotenv.2014.02.020

Lathuillière, M. J., Miranda, E. J., Bulle, C., Couto, E. G., & Johnson, M. S. (2017). Land occupation and transformation impacts of soybean production in Southern Amazonia, Brazil. Journal of cleaner production, 149, 680-689. DOI: 10.1016/j.jclepro.2017.02.120

Lee, Y. K., Low, C. S. (1992). Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnology and bioengineering, 40(9), 1119-1122. DOI: 10.1002/bit.260400917

Market Research Reports (2021). Algae Products Market by Type (Spirulina, Chlorella, Astaxanthin, Beta Carotene, and Hydrocolloids), Source (Brown Algae, Blue-Green Algae, Red Algae, and Green Algae), Form (Solid and Liquid), and Application (Food & Beverages, Nutraceuticals & Dietary Supplements, Personal Care, Feed, Pharmaceuticals, Chemicals, and Fuel): Global Opportunity Analysis and Industry Forecast, 2018 – 2025. Accessed in January, 10th, 2021

Maroneze, M. M., Deprá, M. C., Zepka, L. Q., & Jacob-Lopes, E. (2019). Artificial lighting strategies in photobioreactors for bioenergy production by Scenedesmus obliquus CPCC05. SN Applied Sciences, 1(12), 1-12. DOI: 10.1007/s42452-019-1761-0

Marsullo, M., Mian, A., Ensinas, A. V., Manente, G., Lazzaretto, A., & Marechal, F. (2015). Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors. Frontiers in Energy Research, 3, 41. DOI: 10.3389/fenrg.2015.00041

Molina, E., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of biotechnology, 92(2), 113-131.DOI: 10.1016/S0168-1656(01)00353-4

Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal research, 39, 101433. DOI: 10.1016/j.algal.2019.101433

Qin, C., & Wu, J. (2019). Influence of successive and independent arrangement of Kenics mixer units on light/dark cycle and energy consumption in a tubular microalgae photobioreactor. Algal Research, 37, 17-29. DOI: 10.1016/j.algal.2018.09.020

Quinn, J. C., Yates, T., Douglas, N., Weyer, K., Butler, J., Bradley, T. H., & Lammers, P. J. (2012). Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresource Technology, 117, 164-171. DOI: 10.1016/j.biortech.2012.04.073

Rahman, K. M. (2020). Food and High Value Products from Microalgae: Market Opportunities and Challenges. In Microalgae Biotechnology for Food, Health and High Value Products (pp. 3-27). Springer, Singapore. DOI: 10.1007/978-981-15-0169-2_1

Ramírez-Mérida, L. G. R., Zepka, L. Q., & Jacob-Lopes, E. (2017). Current production of microalgae at industrial scale. Recent advances in renewable energy, 242-260.

Santos, A. M., Deprá, M. C., Cichoski, A. J., Zepka, L. Q., & Jacob-Lopes, E. (2020). Sustainability metrics on microalgae-based wastewater treatment system. Desalin. Water Treat., 185, 51-61. DOI: 10.5004/dwt.2020.25397

Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1-3), 136-147. DOI: 10.1016/j.cej.2007.06.004

Sills, D. L., Van Doren, L. G., Beal, C., & Raynor, E. (2020). The effect of functional unit and co-product handling methods on life cycle assessment of an algal biorefinery. Algal Research, 46, 101770. DOI: 10.1016/j.algal.2019.101770

Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 304, 122997. DOI: 1016/j.biortech.2020.122997

Tua, C., Ficara, E., Mezzanotte, V., & Rigamonti, L. (2021). Integration of a side-stream microalgae process into a municipal wastewater treatment plant: A life cycle analysis. Journal of Environmental Management, 279, 111605. DOI: 10.1016/j.jenvman.2020.111605

Walls, L. E., Velasquez-Orta, S. B., Romero-Frasca, E., Leary, P., Noguez, I. Y., & Ledesma, M. T. O. (2019). Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochemical Engineering Journal, 151, 107319. DOI: 10.1016/j.bej.2019.107319

DOI: https://doi.org/10.34117/bjdv7n3-354


  • There are currently no refbacks.