Development of a Solar Panel Control Strategy for Tracking Maximum Power Generation / Desenvolvimento de uma estratégia de controlo de painéis solares para rastrear a produção máxima de energia

Aurélio Gouvêa de Melo, Milena Faria Pinto, Alessandro R. L. Zachi, Camile A. Moraes, Cleberson L. A. Melo, Marcos G. L. Moura


The solar panel is an essential energy conversion component of photovoltaic (PV) systems, an indispensable key for converting clean and sustainable solar energy into electricity. Over the last few years, there has been a growing demand for renewable sources due to sustainable development and global warming.  Therefore, this work  describes  the  prototype  of an electronic supervision and control system  for  the  orientation  of  a  bench  solar  panel. The developed tracker prototype has as its core an electronic circuit based on a commercial microcontroller model Tennsy 3.0, within which the control algorithm is embedded. In addition to the controller, a supervisory software was developed to monitor solar cells’ status in real-time. The supervisory showed the angle of the solar plate and values of luminosity and acquired power. Simulations results were presented to show that the amount of energy generated can   reach 37 %.



Solar tracker, Microcontroller electronics, Solar energy, PID controller.

Full Text:



Aguilar, P.V., Espinoza-Trejo, D.R., Saavedra, J.L., De Angelo, C.H., and Taheri, S. (2019). Nonlinear control of a boost dc/dc converter for photovoltaic mppt systems using a tms320f28379d microcontroller. In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), 156–161. IEEE.

Anderson, N., Pillai, S., Wang, C., Bjuggren, J.M., Jevric, M., Andersson, M.R., Kopidakis, N., and McNeillb, C.R. (2019). Characterization of the photochemical stability of all-polymer solar cells.

Bendib, B., Belmili, H., and Krim, F. (2015). A survey of the most used mppt methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637–648.

Chung, H.H., Tse, K., Hui, S.R., Mok, C., and Ho, M. (2003). A novel maximum power point tracking technique for solar panels using a sepic or cuk converter. IEEE transactions on power electronics, 18(3), 717–724.

Costa, A.M.G., Lopes, B.M., and Uturbey, W. (2018). Mapeamento do potencial de geração solar fotovoltaica no brasil–uma abordagem preliminar. Revista Brasileira de Energia Solar, 9(1), 30–40.

Cui, Y., Yao, H., Hong, L., Zhang, T., Xu, Y., Xian, K., Gao, B., Qin, J., Zhang, J., Wei, Z., et al. (2019a). Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Advanced Materials, 31(14), 1808356.

Cui, Y., Yao, H., Zhang, J., Zhang, T., Wang, Y., Hong, L., Xian, K., Xu, B., Zhang, S., Peng, J., et al. (2019b). Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature communications, 10(1), 2515.

Debbichi, L., Lee, S., Cho, H., Rappe, A.M., Hong, K.H., Jang, M.S., and Kim, H. (2018). Mixed valence perovskite cs2au2i6: A potential material for thin-film pb-free photovoltaic cells with ultrahigh efficiency. Advanced Materials, 30(12), 1707001.

Farias, W.C.M., Silva, N.P.S., and Maia, L.F.P.G. (2020). Atlas do índice ultravioleta para o estado do rio de janeiro.

Fathabadi, H. (2016). Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators. Renewable Energy, 95, 485–494.

Genene, Z., Mammo, W., Wang, E., and Andersson, M.R. (2019). Recent advances in n-type polymers for all-polymer solar cells. Advanced Materials, 31(22), 1807275.

inmet (2020). Bdmep - banco de dados meteorológicos para ensino e pesquisa.

Jamroen, C., Komkum, P., Kohsri, S., Himananto, W., Panupintu, S., and Unkat, S. (2020). A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 37, 100618.

Kathushiko, O. (2011). Engenharia de controle moderno. 5º edição. Editora LTC.

Khan, M.T.A., Tanzil, S.S., Rahman, R., and Alam, S.S. (2010). Design and construction of an automatic solar tracking system. In International Conference on Electrical & Computer Engineering (ICECE 2010), 326–329. IEEE.

Kim, K.H. and Cho, S.B. (2019). An efficient concentrative photovoltaic solar system with bayesian selection of optimal solar tracking algorithms. Applied Soft Computing, 83, 105618.

Kiyak, E. and Gol, G. (2016). A comparison of fuzzy logic and pid controller for a single-axis solar tracking system. Renewables: Wind, Water, and Solar, 3(1), 1–14.

Liu, L., Meng, X., and Liu, C. (2016). A review of maximum power point tracking methods of pv power system at uniform and partial shading. Renewable and Sustainable Energy Reviews, 53, 1500–1507.

Sabir, M.M. and Ali, T. (2016). Optimal pid controller design through swarm intelligence algorithms for sun tracking system. Applied Mathematics and Computation, 274, 690–699.

Yao, H., Cui, Y., Qian, D., Ponseca, C.S., Honarfar, A., Xu, Y., Xin, J., Chen, Z., Hong, L., Gao, B., et al. (2019). 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. Journal of the American Chemical Society.

Zhao, b., zhao, z., li, y., wang, r., and taylor, r. (2019). An adaptive pid control method to improve the power tracking performance of solar photovoltaic air-conditioning systems. Renewable and sustain



  • There are currently no refbacks.