Espectroscopia Raman e Infravermelho próximo para identificação de carotenoides em amostras vegetais: uma revisão / Raman and Near Infrared Spectroscopy for carotenoid identification in plant samples: a review

Darlisson Slag Neri Silva, Angélica de Brito Sousa, Hudson de Carvalho Silva, Juracir Francisco de Brito, Ronaldo Cunha Coelho, Naise Mary Caldas

Abstract


 Este trabalho fornece uma visão da aplicação das tecnologias de espectroscopia Rama e Infravermelho próximo para análise de carotenoides em diversas matrizes vegetais. São apresentados os princípios da técnica de espalhamento Raman e suas aplicações na elucidação da composição dos pigmentos presentes, bem como a teoria por trás da técnica do Infravermelho próximo. Os métodos de análise de dados Raman e Infravermelho próximo, tais como pré-processamento de dados, análise de mistura espectral e análise quantitativa, são apresentados com exemplos para analisar dados espectrais e de imagem Raman de produtos hortícolas selecionados incluindo tomate e cenoura. As técnicas de espectroscopia Raman e Infravermelho próximo podem ser utilizadas para traçar rapidamente e de forma qualitativa os carotenoides presentes nos diferentes extratos vegetais. Tais métodos de detecção podem ser usados diretamente para a análise de amostras sem a necessidade de preparação de amostras ou separação cromatográfica. Consequentemente, eles permitem uma leitura rápida para a detecção de múltiplos analitos.


Keywords


Carotenoides, Raman, infravermelho próximo.

References


RICHTER P, HÄDER DP. Pigments. Elsevier Inc.; 2017.

YAMADA R.; YAMAUCHI A.; ANDO Y., KUMATA Y.; OGINO H. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae. Bioresource Technology 2018, 268, 616.

MARTINS, N.; FERREIRA, I. C.F.R. Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends In Food Science & Technology 2017, 62.

GIULIANI, A.; CERRETANI, L.; CICHELLI, A. Colors: Properties and Determination of Natural Pigments. Encyclopedia of Food And Health 2016, 273.

MELÉNDEZ-MARTÍNEZ, A. J.; MAPELLI-BRAHM, P.; STINCO, C. M. The colourless carotenoids phytoene and phytofluene: From dietary sources to their usefulness for the functional foods and nutricosmetics industries. Journal of Food Composition And Analysis 2018, 67, 91.

RODRIGUEZ-AMAYA D. B. Bioactive Carotenes and Xanthophylls in Plant Foods. Edição, cidade: Elsevier; 2018.

IGIELSKA-KALWAT, J.; OLEJNIK, A.; GOSCIANSKA, J.; SLIWOWSKA, A.; NOWAK, I. Application of optical methods to determine the stability of emulsions containing carotenoids. Colloids And Surfaces: Physicochemical and Engineering Aspects 2019.

NIU F.; LU, Q.; BU, Y.; LIU, J. METABOLIC ENGINEERING FOR THE MICROBIAL production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synthetic And Systems Biotechnology 2017, 2, 167.

WANG, E.; DONG, C. PARK, R. F.; ROBERTS, T. H. Carotenoid pigments in rust fungi: Extraction, separation, quantification and characterisation. Fungal Biology Reviews, 2018, 32, 166.

MI J.; JIA, K.; WANG J.Y.; AL-BABILI S. A rapid LC-MS method for qualitative and quantitative pro fi ling of plant apocarotenoids. Analytica Chimica Acta 2018, 1035, 87.

SAINI, R. K.; KEUM, Y. S. Carotenoid extraction methods: A review of recent developments. Food Chemistry 2018, 240, 90.

UENOJO, M.; MARÓSTICA, M. R.; PASTORE, G. M. Carotenóides: Propriedades, aplicações e biotransformação para formação de compostos de aroma. Química Nova 2007, 30, 616.

YOUNG, A.J.; LOWE, G. M. Antioxidant and Prooxidant Properties of Carotenoids . Archives of Biochemistry and Biophysics 2001, 385, 20.

DIAS, J. L.; MAZZUTTI, S.; SOUZA, J. A. L. de.; FERREIRA, S. R. S.; SOARES, L. A. L.; STRAGEVITCH, L.; DANIELSKI, L. Extraction of umbu (Spondias tuberosa) seed oil using CO2, ultrasound and conventional methods: Evaluations of composition profiles and antioxidant activities. The Journal of Supercritical Fluids 2018, 145, 10.

MAURER, M. M.; MEIN, J. R.; CHAUDHURI, S. K.; CONSTANT, H. L. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chemistry 2014, 165, 475.

GRANADO-LORENCIO, F.; BLANCO-NAVARRO, I.; PÉREZ-SACRISTÁN, B.; HERNÁNDEZ-ÁLVAREZ, E. Biomarkers of carotenoid bioavailability. Food Research International 2017, 99, 902.

HULSHOF, P.J. M.; KOSMEIJER-SCHUIL, T.; WEST, C. E.; HOLLMAN, P. C. H. Quick screening of maize kernels for provitamin A content. Journal of Food Composition and Analysis 2007, 20, 655.

KIMURA, M.; KOBORI, C. N.; RODRIGUEZ-AMAYA, D. B.; NESTEL, P. Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chemistry 2007, 100, 1734.

WANG, N.; MANABE, Y.; SUGAWARA, T.; PAUL, N. A.; ZHAO, J. Identification and biological activities of carotenoids from the freshwater alga (Oedogonium intermedium). Food Chemistry 2017, 242, 247.

Republic C, Republic C. Reliability of Carotenoid Analyses : A Review. Curr Anal Chem 2005:93–102.

BERARDO, N.; BRENNA, O. V.; AMATO, A.; VALOTI, P.; PISACANE, V. MOTTO, M. Carotenoids concentration among maize genotypes measured by near infrared reflectance spectroscopy ( NIRS ). Innovative Food Science & Emerging Technolo 2004, 5, 393.

QIN, J.; KIM, M. S.; CHAO, K.; DHAKAL, S.; CHO, B.; LOHUMI, S.; MO, C.; PENG, Y.; HUANG, M. Advances in Raman spectroscopy and imaging techniques for quality and safety inspection of horticultural products. Postharvest Biol Technol 2019,149, 101.

SKOOG D. A.; HOLLER F.J.; CROUCH, S. R. Princípios de Análise Instrumental. 6a. ed. Bookman: Porto Alegre: 2009.

RIVERA, S.M.; CANELA-GARAYOA, R. Analytical tools for the analysis of carotenoids in diverse materials. Journal of Chromatography A 2012, 1224, 1.

PELLETIER M. J. Quantitative Analysis Using Raman Spectrometry. Applied Spectroscopy 2003, 57, 20.

RODRIGUES, A. de G.; GALZERANI, J. C. Espectroscopias de infravermelho, Raman e de fotoluminescência: potencialidades e complementaridades. Revista Brasileira de Ensino de Física 2012, 34, 4309.

Figueira, L. C.; Dissertação de Mestrado, Universidade Federal do Oeste do Pará, 2012.

SUN, D. Modern Techniques for Food Authentication. 2a. ed. Elsevier, 2018.

Martínez-valdivieso, D.; Fonte, R.; Blanco-díaz, M. T.; Moreno-rojas, J. M.; Gómez, P.; Alonso-moraga, Á.; Rio-celestino, M. D. Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Computers and Electronics in Agriculture 2014,108,71.

WANG, Xichang. Near-infrared spectroscopy for food quality evaluation. Evaluation Technologies For Food Quality 2019, 105.

Davey, M. W.; Saeys, W.; Hof, E.; Herman, R.; Swennen, R. L.;Keulemans J. Application of Visible and Near-Infrared Reflectance Spectroscopy (Vis/NIRS) to Determine Carotenoid Contents in Banana (Musaspp.) Fruit Pulp. Journal of Agricultural and Food Chemistry 2009, 57, 1742.

Schulz, H.; Baranska, M.; Baranski, R. Potential of NIR-FT-Raman Spectroscopy in Natural Carotenoid Analysis. Biopolymers 2005, 77, 212.

Smith, W. E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach. 1a. ed. West Sussex: John Wiley & Sons, 2005.

Sandeman K. Raman Spectroscopy. Cambridge: University of Cambridge; 2015.

Rodriguez-Amaya, D. B. Handbook of Antioxidants for Food Preservation. 1ed. Elsevier, 2015.

Baranska, M.; Baranski, R.; Schulz, H. Tissue-specific accumulation of carotenoids in carrot roots. Planta 2006, 224, 1028.

Lohumi, S.; Lee, H.; Kim, M. S,Qin J, Cho B. applied sciences Raman Imaging for the Detection of Adulterants in Paprika Powder : A Comparison of Data Analysis Methods. Applied Sciences 2018, 8, 1.

Qin, J.; Kim, M. S.; Chao, K.; Schmidt, W. F.; Cho, B.; Delwiche, S. R. Line-scan Raman imaging and spectroscopy platform for surface and subsurface evaluation of food safety and quality. Journal of Food Engineering 2017, 198, 17.

Qin, J.; Kim, M. S.; Chao, K.; Schmidt, W. F.; Dhakal, S.; Cho, B. PENG, Y.; HUANG, M. Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique. Food Control 2016,75, 246.

Zhang, Z.; Chen, S.; Liang, Y. Baseline correction using adaptive iteratively reweighted penalized least squares. The Analyst 2010,13, 1138.

Prinsloo, L.C.; Plooy, W.; Merwe, C. D. Raman spectroscopic study of the epicuticular wax layer of mature mango ( Mangifera indica ) fruit. Journal of Raman Spectroscopy 2004, 35, 561.

Nekvapil, F.; Brezestean, I.; Barchewitz, D.; Glamuzina, B. Chi, V.; Cint, S. Citrus fruits freshness assessment using Raman spectroscopy. Food Chemistry 2018, 242, 560.

Pinzaru, S. C.; Müller, C.; Tom, S.; Venter, M. M.; Cozar, B. I. New SERS feature of β -carotene : consequences for quantitative SERS analysis. Journal of Raman Spectroscopy 2015, 46, 597.

Sebben, J.; Espindola, S.; Ranzan, L.; Moura, N. F. de; Ferreira, L. T. ; TRIERWEILER, O. Development of a quantitative approach using Raman spectroscopy for carotenoids determination in processed sweet potato. Food Chemistry 2018,245, 1224.

Hara, R.; Ishigaki, M.; Kitahama, Y.; Ozaki, Y.; Genkawa, T. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy. Food Chemistry 2018, 258, 308.

Qin, J.; Chao, K.; Kim, M. S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biology and Technology 2012, 71, 21.

RUBIO-DIAZ, D. E.; FRANCIS, D. M.; RODRIGUEZ-SAONA, L. E. External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. Journal of Food Composition and Analysis, 2011, 24, 121.

Nardo Th, Shiroma-Kian C, Halim Y, Francis D, Rodriguez-SAona LE. Rapid and Simultaneous Determination of Lycopene and -Carotene Contents in Tomato Juice by Infrared Spectroscopy. J Agric Food Chem 2015;57:1105–12.

BONIERBALE, M.; GRUNEBERG, W.; AMOROS, W.; BURGOS, G.; SALAS, E.; PORRAS, E. Total and individual carotenoid profiles in Solanum phureja cultivated potatoes : II . Development and application of near-infrared reflectance spectroscopy ( NIRS ) calibrations for germplasm characterization. Journal of Food Composition And Analysis 2009,22, 509.

PARMAR, R. S.; SINGH, C. A. comprehensive study of eco-friendly natural pigment and its applications. Biochemistry and Biophysics Reports 2018,13, 22.

SUN, T.; YUAN, H.; CAO, H.; YAZDANI, M.; TADMOR, Y.; LI, L. Carotenoid Metabolism in Plants: The Role of Plastids. Molecular Plant 2018,11, 58.

DOMONKOS I.; KIS, M.; GOMBOS, Z.; UGHY, B. Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research 2013, 52, 539.

GIUFFRIDA, D.; ZOCCALI, M.; GIOFRÈ, S. V.; DUGO, P.; MONDELLO, L. Apocarotenoids determination in Capsicum chinense Jacq . cv . Habanero , by supercritical fluid chromatography-triple-quadrupole / mass spectrometry. Food Chemistry 2017, 231, 316.

ZHOU, X.; HUANG, W.; KONG, W., YE, H.; DONG, Y. Assessment of leaf carotenoids content with a new carotenoid index : Development and validation on experimental and model data. International Journal of Applied Earth Observation and Geoinformation 2017, 57, 24.




DOI: https://doi.org/10.34117/bjdv7n2-176

Refbacks

  • There are currently no refbacks.