Development of the capability coefficient (Cdl*) for quality control of measuring instruments and systems / Desenvolvimento do coeficiente de capacidade (Cdl*) para o controlo de qualidade dos instrumentos e sistemas de medição

Authors

  • José Eduardo Ferreira Oliveira Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Carlos Augusto do Nascimento Oliveira
  • Rogério Pontes Araújo
  • Eduardo José Alécio Oliveira
  • Nelson Gonçalves Silva
  • Antônio Marcos Figueiredo Soares

DOI:

https://doi.org/10.34117/bjdv7n2-117

Keywords:

Metrological Control, Capability, Cdl*, Cg, Measurement System.

Abstract

One of the most relevant problems faced with regard to quality assurance is the ability to carry out measurements with metrological reliability. Knowing the behavior of a measuring instrument or system and properly adapting the measurement process are fundamental features of metrological control. Within this context, the objective of this work is to present the Cdl* capability coefficient, developed with two basic purposes: to verify whether a certain measurement process is capable of measuring a determined measurand, that is, if it is able to perform a measurement with reliability; and to monitor the behavior of a given instrument or measurement system, so that both systematic and random variations can be perceived. The basis used for the development of the Cdl*capability coefficient is presented, as well as a comparison with the Cg capability coefficient, used to verify the capability of measuring instruments and systems. Two experiments with different measurands are presented, highlighting the applicability of the practical use of the coefficient in each situation. as well as, all The statistical treatment performed on the samples used is also presented, involving the verification of normality, outliers, and minimum sample size, in addition to the verification of process control statistics, correlation, and hypothesis tests using the Cdl* and Cg coefficients, amking it possible to conclude that the new capability coefficient presented in this study is capable of contributing to quality control of measurement processes, and of playing an innovative role in the area of metrology.

References

Sousa, A. R.; Jr., A. A. Fundamentos de metrologia científica e industrial. Editora Manole, Barueri, 2008.

Tuominen, V.; Niini, , I. Verification of the accuracy of a real-time optical 3D-measuring system on production line. The international archives of the photogrammetry, remotes ensing and spatial information sciences. Vol. XXXVII. Part B5. Beijing, 2008.

Bujara, M.; Imkamp, D. Acceleration of quality control on coordinate measuring machines with “navigator scanning”. Annals of the Oradea University. Fascicle of management and technological engineering, volume VI (XVI), 2007.

Jankovych, R.; Beer, S. T-72 tank barrel wear. International journal of mechanics, issue, 4, volume 5, 2011.

Rahmati, S. H. A.; Amalnick, M. S. Fuzzy gauge capability (Cg and Cgk) through buckley approach. International journal of mechanical, aerospace, industrial, mechatronic and manufacturing engineering, vol. 9, n. 8, 2015.

Polák, P.; Drlicka, R.; Zkinansky, J. Capability assessment of measuring equipment using statistic method. Management systems in productionengineering, n. 4 (16), pp 184 – 186, 2014.

Kureková, E. Measurement process capability – trends and approaches. MEASUREMENT SCIENCE REVIEW, Volume 1, Number 1, 2001.

NBR ISO/IEC 17025. Requisitos gerais para a competência de laboratórios de ensaio e calibração. Associação Brasileira de Normas Técnicas - ABNT, Rio de Janeiro, 2017.

GUM - Avaliação de dados de medição: guia para a expressão de incerteza de medição. INMETRO/CICMA/SEPIN, Duque de Caxias, Rio de Janeiro, 2012.

Neto B. B.; Scarminio, I. S.; Bruns, R. E. Como fazer experimentos. 3ª ed. Editora Unicamp, 2007.

MANN, Prem S. Introdução à estatística / Prem S. Mann. tradução Teresa Cristina Padilha de Souza; contribuições de Christopher Jay Lacke. - 8. ed. - Rio de Janeiro: LTC, 2015.

Thompson, P. W. Understanding Sampling Distributions And Margin Of Error. Paper presented at 2nd Conference on Statistics Reasoning, Teaching, and Literacy. 2001.

Joao Pinheiro, Sonia Cunha, Gastão Gomes e Santiago Carvajal. Probabilidade e Estatística. Quantificando A Incerteza. Elsevier, 2012.

Shapiro, S. S.; Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika, vol. 52, No. 3/4, (Dec., 1965), 591 – 611.

Sheskin, David J – Handbook of parametric and nonparametric statistical procedures 3rd Edition. CRC Press LLC. Florida, 2003.

Kapur, Kailash C. Reability Engineering. Hoboke, New Jersey: John Wiley & Sons,Inc., 2014.

Kececioglu, D. Reliability & Life Testing Handbook. Vol. 1 and 2. Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1993 and 1994.

Kececioglu, Dimitri. Reliability and Life testing Handbook, Volume 1, Destech Publications Inc. USA, 2002.

ACIC NORMALIDADE. Download,C2019. Pagina inicial. Available at <https://sites.google.com/site/acicnormalidade>. Accessed on 2/5/2020.

Rorabacher, R. D. B. Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% level. Anal. Chem., 63 (2), 1991, 139 – 146.

Grubbs, F. E. Procedures for Detecting Outlying Observations in Samples. American Society for Quality, Technometrics, Vol. 11, No. 1, 1969, p. 1-21.

Link, W. Tópicos avançados de metrologia mecânica – Confiabilidade metrológica e suas aplicações.1a ed., São Paulo, 2000.

ANALYSIS OUTLIERS. Download,C2019. Available at <https://sites.google.com/site/outliersanalysis>. Accessed on 2/5/2020.

Brunelli, A. Calibration Handbook of Measuring Instruments. 1th ed. ISA, 2017.

NASA. Measurement Uncertainty Analysis Principles and Methods - NASA Measurement Quality Assurance Handbook – ANNEX 3. National Aeronautics and Space Administration, Washington DC 20546, 2010.

Venturi, G.; Eidt, W.; Beckert, S. F. Capacidade de medição e calibração e seu impacto na comprovação metrológica. Congresso Nacional de Engenharia Mecânica – CONEM – 2016, Fortaleza, 2016.

Hinkle, DE; Wiersma, W; Jurs SG. Applied Statistics for the behavioral sciences, 5th edition. Boston: Houghton Mifflin, 2003.

ISO 7870-1.Control charts – part 1: General guidelines. ISO/TC 69 applications of statistical methods, 2014.

ISO 7870-2. Control charts – part 2: Shewhart control charts. ISO/TC 69 applications of statistical methods, 2013.

NBR 6158. Sistemas de tolerâncias e ajustes. Associação brasileira de normas técnicas – ABNT, Rio de Janeiro, 1995.

SAMPLE SIZE CALC SOFTWARE. Download,C2020. About. Available at <https://sites.google.com/site/samplesizecalcsoftware>. Accessed on 30/7/2020.

ISO/ ABNT NBR 10012-1. Requisitos de garantia da qualidade para equipamentos de medição – parte 1: sistema de comprovação metrológica para equipamentos de medição. Associação brasileira de normas técnicas, Rio de Janeiro, 1993.

Rolim, T. L. Sistemática indicadora de método para a calibração de máquinas de medição por coordenadas. Tese do Programa de Pos Graduação em Engenharia Mecânica da UFPB. João Pessoa, 2003.

Urrutia, J. D. Avaliação dos processos de medição na indústria baseada no impacto econômico da operação de controle geométrico. Congresso Brasileiro de Metrologia, São Paulo, 2000.

Published

2021-02-08

How to Cite

Oliveira, J. E. F., Oliveira, C. A. do N., Araújo, R. P., Oliveira, E. J. A., Silva, N. G., & Soares, A. M. F. (2021). Development of the capability coefficient (Cdl*) for quality control of measuring instruments and systems / Desenvolvimento do coeficiente de capacidade (Cdl*) para o controlo de qualidade dos instrumentos e sistemas de medição. Brazilian Journal of Development, 7(2), 13459–13480. https://doi.org/10.34117/bjdv7n2-117

Issue

Section

Original Papers