Structural reliability analysis of a marquee element/Análise de fiabilidade estrutural de um elemento de marquise

Renan Filipe Pires Novaes, Alverlando Silva Ricardo, Josilane Pereira Melo da Silva, Bárbara Magalhães Simionatto

Abstract


Usually, projects of torsion beams situations caused by marquees are made considering a prescriptive methodology, not considering the unsureness related to the problem. When such uncertainties are ignored, projects can be oversized or not satisfactorily safe. An option to overcome this problem is an application of reliability theory, which consists of quantifying structural safety using probability of failure. Thus, the probability of failure of a beam subjected to torsion caused by a marquee is estimated in this article. For this, the reliability methods FORM (First Order Reliability Method) and Monte Carlo are applied. The reliability analysis are evaluated considering the variation of the geometric dimensions and the properties of the materials involved. It is also done an analysis of the sensitivity indexes of the random variables that are part of the proposed problem limit state equation. The random variable of greatest contribution to failure was the specific weight of the concrete, with 60% of the composition of the probability of failure. The Fck, in turn, was the random variable that contributed the most to the reliability of the beam. The results demonstrate the importance of considering the uncertainties inherent in structural project of beams subjected to torsion.


Keywords


Structural analysis, Structural element, Probability of failure, FORM, Monte Carlo, Sensitivity Index, Marquee, Precast Concrete.

Full Text:

PDF

References


ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (Brazilian Association of Technical Standards) NBR 6118:2014: Projeto de estruturas de concreto – procedimentos (Design of Structural Concrete – Procedure). Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (Brazilian Association of Technical Standards) NBR 6120: Cargas para o cálculo de estruturas de edificações (Loads for Structure Building Design). Rio de Janeiro, 1980. 3 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (Brazilian Association of Technical Standards) NBR 12.665: Concreto – Preparo, controle e recebimento (Concrete – Prepare, control, receiving). Rio de Janeiro, 2006. 22 p.

BAILEY, C. G. Advances in fire engineering design of steel structures. Proc Inst. Civil Eng Struct Build 159:21–35, 2006.

BECK, A. T., Curso de confiabilidade estrutural. Universidade de São Paulo, Escola de Engenharia de São Carlos, São Paulo, 2014, 236p.

BEER, F. P.; JOHNSTON JR, E. R.; DEWOLF, J. T.; MAZUREK, D. F.; Mechanics of Materials – 5th edition. – The McGraw-Hill Companies, Inc., Nova Iorque, NY, 2008. 799p.

BOTELHO, Manoel Henrique Campos; Marchetti, Osvaldemar. Concreto armado, eu te amo, vol. 1/6ª ed. – São Paulo, 2010. 190 p.

CHING, Jianye; Practical Monte Carlo based reliability analysis and design methods for geotechnical problems; National Taiwan University, Taiwan, Republic of China, 2011.

GONÇALVES, Márcio de Oliveira; Marquises de concreto armado da cidade de Viçosa-MG: Manifestações patológicas, inspeção e avaliação de grau de deterioração/ Universidade Federal de Viçosa, Viçosa – MG, 2011. 17 p.

MARCOLAN JÚNIOR, Auro Cândido; Influência de distribuição de probabilidade ajustadas a propriedades mecânicas sobre probabilidades de falha estrutural/ Universidade Federal de Santa Catarina, Florianópolis – SC, 2016.

MAHSULI, M. AND HAUKAAS, T.. Computer program for multimodel reliability and optimization analysis. Journal of Computing in Civil Engineering, 27(1), 87–98, 2013.

SANTIAGO, W. C.; Estudo da (não-) conformidade de concretos produzidos no Brasil e sua influência na confiabilidade estrutural; Escola de Engenharia de São Carlos, São Carlos, 2011.




DOI: https://doi.org/10.34117/bjdv7n2-018

Refbacks

  • There are currently no refbacks.