Produção Microbiológica de Enzimas: uma Revisão/Microbiological Production of Enzymes: a Review

Diane Rigo, Luana Gayeski, Gabriela Albuquerque Tres, Fernanda DalMaso Camera, Jamile Zeni, Eunice Valduga, Rogério Luis Cansian, Geciane Toniazzo Backes

Abstract


A produção de enzimas a partir de microrganismos possui extensa aplicação na indústria alimentícia buscando a melhoria do processo de produção e outros componentes relacionados. As lipases produzidas por microrganismos têm ganhado um enorme interesse industrial devido à sua versatilidade, maior rendimento e produção independente da estação do ano. O objetivo deste trabalho foi realizar uma revisão bibliográfica da produção microbiológica de enzimas, com foco principalmente em lipases devido a sua importância no meio industrial, identificando quais os principais microrganismos empregados, forma de produção, métodos de isolamento, purificação e aplicação. O trabalho foi desenvolvido por meio de pesquisa bibliográfica realizada em artigos científicos, dissertações e teses localizados nas bases de dados online e portais de pesquisa. Este estudo mostrou que a produção de enzimas por microrganismos vem sendo muito estudada indicando diferentes posteriores aplicações para a indústria. A possibilidade de utilização de resíduos agroindustriais para a produção microbiana de enzimas também é uma boa alternativa para sanar problemas ambientais, além de envolver baixos custos no processo. Para a produção de lipases, existem inúmeros microrganismos que podem atender esta procura, no entanto, os fungos se destacam, sendo os maiores produtores de lipase microbiana.


Keywords


Produção enzimática, Microrganismos, Lipases.

References


Aguilar, J. G. dos S.; Sato, H. H. (2017). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 10.1016/j.foodres.2017.10.044.

Aita, B. C.; Spannemberg, S. S.; Schmaltz, S.; Zabot, G. L.; Tres, M. V.; Kuhn A, R. C.; Mazutti, M. A. (2019). Production of cell-wall degrading enzymes by solid-state fermentation using agro industrial residues as substrates. Journal of Environmental Chemical Engineering, v. 7, 103193, https://doi.org/10.1016/j.jece.2019.103193.

Aggarwal, R.; Dutta, T.; Sheikh, J. (2020). Extraction of pectinase from Candida isolated from textile mill effluent and its application in bio-scouring of cotton. Sustainable Chemistry and Pharmacy, v. 17, 100291, https://doi.org/10.1016/j.scp.2020.100291.

Al-Dhabi, N. A.; Esmail, G. A.; Ghilan, A.-K. M.; Arasu, M. V.; Duraipandiyan, V.; Ponmurugan, K. (2019). Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications. Journal of King Saud University – Science, https://doi.org/10.1016/j.jksus.2019.11.011.

Aziz, M. M. A.; Elgammal, E. W.; Ghitas, R. G. (2020). Comparative study on modeling by neural networks and response surface methodology for better prediction and optimization of fermentation parameters: Application on thermo-alkaline lipase production by Nocardiopsis sp. strain NRC/WN5 Biocatalysis and Agricultural Biotechnology, v. 25, 101619, https://doi.org/10.1016/j.bcab.2020.101619.

Bharathi, D.; Rajalakshmi, G. (2019). Microbial lipases: An overview of screening, production and purification. Biocatalysis and Agricultural Biotechnology, v. 22, 101368, https://doi.org/10.1016/j.bcab.2019.101368.

Budžaki, S.; Miljić, G.; Sundaram, S.; Tišma, M.; Hessel, V. (2018). Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Applied Energy, v. 210, p. 268–278, https://doi.org/10.1016/j.apenergy.2017.11.026.

Collaço, A. C. A.; Aguieiras, E. C. G.; Cavalcanti, E. D. C.; Freire, D. M. G. (2021). Development of an integrated process involving palm industry co-products for monoglyceride/diglyceride emulsifier synthesis: Use of palm cake and fiber for lipase production and palm fatty-acid distillate as raw material. LWT - Food Science and Technology, v. 135, 110039, https://doi.org/10.1016/j.lwt.2020.110039.

Costa, T. P.; Spencer, P. V. D.; Souza, M. J.; Rocha, A. C. P.; Nelson, D. L.; Pinto, N. A. V. D. (2020). Standardization of the cultivation of the isolated filamentous fungus A4 for lipase production. Brazilian Journal of Development, Curitiba v. 6, n. 10, p.76404-76423, DOI:10.34117/bjdv6n10-168.

Da Silva, M. D.; Ernandes, F. M. P. G.; Cruz, C. H. G. (2020). Selection and isolation of fungi strains and the use of banana peel a support for lipases production. Brazilian Journal of Development, Curitiba, v. 6, n. 7, p. 51310-51320, DOI:10.34117/bjdv6n7-685.

De Morais Júnior, W. G.; Kamimura, E. S.; Ribeiro, E. J.; Costa Pessela, B. C.; Cardoso, V. L.; De Resende, M. M. (2016). Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation. Protein Expression and Purification, v. 123, p. 26-34, http://dx.doi.org/10.1016/j.pep.2016.04.001.

Duan, X.; Xianga, M.; Wanga L.; Yanc, Q.; Yanga, S.; Jianga, Z. (2019). Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters. Food Chemistry, v. 297, 124925, https://doi.org/10.1016/j.foodchem.2019.05.199.

Gaonkar, S. K.; Furtado, I. J. (2020). Valorization of low-cost agro-wastes residues for the maximum production of protease and lipase haloextremozymes by Haloferax lucentensis GUBF-2 MG076078. Process Biochemistry, https://doi.org/10.1016/j.procbio.2020.10.019.

Geoffry, K.; Achur, R. N. (2018). Optimization of novel halophilic lipase production by Fusarium solani strain NFCCL 4084 using palm oil mill effluent. Journal of Genetic Engineering and Biotechnology, v. 16, p. 327–334, https://doi.org/10.1016/j.jgeb.2018.04.003.

Griebeler, N.; Polloni, A. E.; Remonatto, D.; Arbter, F.; Vardanega, R.; Cechet, J. L.; Di Luccio, M.; De Oliveira, D.; Treichel, H.; Cansian, R. L.; Rigo, E.; E L. Ninow, J. L. (2011). Isolation and Screening of Lipase-Producing Fungi with Hydrolytic Activity. Food Bioprocess and Technology, v. 4, p. 578–586, DOI 10.1007/s11947-008-0176-5.

Gururaj, P.; Ramalingam, S.; Devi, G. N.; Gautam, P. (2016). Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Brazilian Journal of Microbiology, v. 47, p. 647–657, http://dx.doi.org/10.1016/j.bjm.2015.04.002.

Hasan, F.; Shah, A. A.; Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, v. 39, p. 235–251, doi:10.1016/j.enzmictec.2005.10.016.

Hemansi, R. G.; Kuhad, R. C.; Saini J. K. (2018). Cost effective production of complete cellulase system by newly isolated Aspergillus niger RCKH-3 for efficient enzymatic saccharification: Medium engineering by overall evaluation criteria approach (OEC). Biochemical Engineering Journal, https://doi.org/10.1016/j.bej.2018.01.019.

Idris, A. S. O.; Pandey, A.; Rao, S.; Sukumaran, R. K. (2017). Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology, https://doi.org/10.1016/j.biortech.2017.03.092.

Jain, R.; Naik, S. N. (2018). Adding value to the oil cake as a waste from oil processing industry: Production of lipase in solid state fermentation. Biocatalysis and Agricultural Biotechnology, v. 15, p. 181–184, https://doi.org/10.1016/j.bcab.2018.06.010.

Jambulingam, R.; Shalma, M.; Shankar, V. (2019). Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. Journal of Cleaner Production, v. 215, p. 245-258, https://doi.org/10.1016/j.jclepro.2018.12.146.

Joshi, R.; Sharmab, R.; Kuila, A. (2019). Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3O4 NPs for application in waste cooking oil degradation. Bioresource Technology Reports, v. 5, p. 134–140, https://doi.org/10.1016/j.biteb.2019.01.005.

Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A. R.; Filipe, D.; Gonçalves, M.; Peres, H.; Belo, I.; Salgado.; J. M. (2020). Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Current Opinion in Green and Sustainable Chemistry, v. 20, p. 2452-2236, 30104-8,https://doi.org/10.1016/j.cogsc.2020.100407.

Lopes, L. S.; Vieira, N.; Da Luz, J. M. R.; Silva, M. De C. S.; Cardoso, W. S.; Kasuya, M. C. M. (2020). Production of fungal enzymes in Macaúba coconut and enzymatic degradation of textile dye. Biocatalysis and Agricultural Biotechnology, v. 26, p. 101651, https://doi.org/10.1016/j.bcab.2020.101651.

Magalhães, A. A. da S.; Silva, T. de A.; Teixeira, M. F. S.; Filho, R. F. C.; da Silva, S. D.; Gomes, D. M. D.; Pereira, J. O. (2019). Produção e caracterização de enzimas proteolíticas de Lentinus crinitus (L.) Fr. 1825 DPUA 1693 do bioma amazônico (Polyporaceae). Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, v.14, n. 3, p. 453-461.

Mahesh, M.; Arivizhivendhan, K. V.; Maharaja, P.; Boopathy, R.; Hamsavathani, V.; Sekaran, G. (2016). Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. Journal of Molecular Catalysis B: Enzymatic, v. 133, p. 43–54, http:// dx.doi.org/10.1016/j.molcatb.2016.07.012.

Mandari, V.; Nema, A.; Devarai, S. K. (2020). Sequential optimization and large scale production of lipase using trisubstrate mixture from Aspergillus niger MTCC 872 by solid state fermentation. Process Biochemistry, v. 89, p. 46-54, https://doi.org/10.1016/j.procbio.2019.10.026.

Mehta, A.; Guleria, S.; Sharma, R.; Gupta, R. (2021). The lipases and their applications with emphasis on food industry. Microbial Biotechnology in Food and Health, https://doi.org/10.1016/B978-0-12-819813-1.00006-2.

Murugan, T.; Deepika, P; Kowsalya, A.; Sivasubramanian, K.; Rejisha, R. P.; M. Murugan, M.; Wins, J. A. (2020). Production and characterization of extracellular pectinase from a newly isolated Bacillus species from fruit waste soil. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.09.607.

Musatti, A.; Ficara, E.; Mapelli, C.; Sambusiti, C.; Rollini, M. (2017). Use of solid digestate for lignocellulolytic enzymes production through submerged fungal fermentation. Journal of Environmental Management, v. 199, p. 1-6, http://dx.doi.org/10.1016/j.jenvman.2017.05.022.

Navvabi, A.; Razzaghi, M.; Fernandesb, P.; Karamid, L.; Homaeia, A. (2018). Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochemistry, https://doi.org/10.1016/j.procbio.2018.04.018.

Oliveira, F.; Souza, C. E.; Peclat, V. R. O. L.; Salgado, J. M.; Ribeiro, B. D.; Coelho, M. A. Z.; Venâncio, A.; Belo, I. (2017). Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, v. 102, p. 268–277, http://dx.doi.org/10.1016/j.fbp.2017.01.007.

Papadaki, E.; Kontogiannopoulos, N. K.; Assimopoulou, A. N.; Mantzouridou, F. T. (2020). Feasibility of multi-hydrolytic enzymes production from optimized grape pomace residues and wheat bran mixture using Aspergillus niger in an integrated citric acid-enzymes production process. Bioresource Technology, v. 309, 123317, https://doi.org/10.1016/j.biortech.2020.123317.

Patel, H.; Ray, S.; Patel, A.; Patel, K.; Trivedi, U. (2020). Enhanced lipase production from organic solvent tolerant Pseudomonas aeruginosa UKHL1 and its application in oily waste-water treatment. Biocatalysis and Agricultural Biotechnology, v. 28, 101731, https://doi.org/10.1016/j.bcab.2020.101731.

Pereira, A. Da S.; Fontes-Sant’ana, G. C.; Amaral, P. F. F. (2019). Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food and Bioproducts Processing, v. 115, p. 68–77, https://doi.org/10.1016/j.fbp.2019.02.002 .

Phukon, L. C.; Chourasiaa, R.; Kumari, M.; Godan, T. K.; Sahoo, D.; Parameswaran, B.; Rai, A. K. (2020). Production and characterisation of lipase for application in detergent industry from a novel Pseudomonas helmanticensis HS6. Bioresource Technology, v. 309, 123352, https://doi.org/10.1016/j.biortech.2020.123352.

Prasanna, H. N.; Ramanjaneyulu, G.; Reddy, B. R. (2016). Optimization of cellulase production by Penicillium sp. Biotech, v. 6, 162, https://doi.org/10.1007/s13205-016-0483-x.

Priyanka, P.; Kinsella, G. K.; Henehan, G. T.; Ryan, B. J. (2020). Isolation and characterization of a novel thermo-solvent-stable lipase from Pseudomonas brenneri and its application in biodiesel synthesis. Biocatalysis and Agricultural Biotechnology, v. 29, 101806, https://doi.org/10.1016/j.bcab.2020.101806.

Priyanka, P.; Tan, Y.; Kinsella, G.; Henehan, G. T.; Ryan, B. J. (2018). Isolation, purification and characterization of a novel solvent stable lipase from Pseudomonas reinekei. Protein Expression and Purification, doi: 10.1016/j.pep.2018.08.007.

Quayson, E.; Amoah, J.; Hama, S.; Akihiko Kondo, A.; Ogino, C. (2020). Immobilized lipases for biodiesel production: Current and future greening opportunities. Renewable and Sustainable Energy Reviews, v. 134, 110355, https://doi.org/10.1016/j.rser.2020.110355.

Radha, P.; Prabhu, K.; Jayakumar, A.; Abilashkarthik, S.; Ramani, K. (2020). Biochemical and kinetic evaluation of lipase and biosurfactant assisted ex novo synthesis of microbial oil for biodiesel production by Yarrowia lipolytica utilizing chicken tallow. Process Biochemistry, v. 95, p. 17–29, https://doi.org/10.1016/j.procbio.2020.05.009.

Rêgo, A. P. B.; Cunha, J. R. R.; Santos, R. S.; De Assis, F. G. Do V.; Leal, P. L. (2019). Produção De Enzimas CMCase E Pectinase Por Processo Fermentativo Utilizando Casca De Café Suplementada Com Manipueira Como Substrato. Revista Brasileira de Energias Renováveis, v.8, n.1, p. 104- 121.

Rigo, E.; Ninow, J. L.; Polloni, A. E.; Remonatto, D.; Arbter, F.; Vardanega, R.; De Oliveira, D.; Treichel, H.; Di Luccio, M. (2009). Improved lipase biosynthesis by a newly isolated Penicillium sp. grown on agricultural wastes. Industrial Biotechnology, v. 5, n. 2, p. 119-116,

Rodrigues, P. De. O.; Gurgel, L. V. A.; Pasquini, D.; Badotti, F.; Goes-Neto, A.; Baffi, M. A. (2020). Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, v. 145, p. 2683-2693, https://doi.org/10.1016/j.renene.2019.08.041.

Roveda, M.; Hemkemeier, M.; Colla, L. M. (2010). Avaliação da produção de lipases por diferentes cepas de microrganismos isolados em efluentes de laticínios por fermentação submersa. Ciência e Tecnologia de Alimentos, Campinas, v. 30, n. 1, p. 126-131.

Salazar, L. N.; Dal Maso, S. S.; Ogimbosvski, T. A.; Daronch, N. A.; Zeni, J.; Valduga, E.; Backes, G. T.; Cansian, R. L. (2019). Production, Partial Characterization and Application of Cellulases by Newly Isolated Penicillium sp. Using Agro-Industrial Substrate Solid-State Fermentation. Industrial Biotechnology, v. 15, n. 2, p. 79-88, DOI: 10.1089/ind.2018.0029.

Schneider, W. D. H.; Gonçalves, T. A.; Uchimab, C. A.; Dos Reis, L.; Fontana, R. C.; Squinac, F. M.; Dillona, A. J. P.; Camassolaa, M. (2018). Comparison of the production of enzymes to cell wall hydrolysis using different carbon sources by Penicillium echinulatum strains and its hydrolysis potential for lignocelullosic biomass. Process Biochemistry, v. 66, p. 162–170, https://doi.org/10.1016/j.procbio.2017.11.004.

Si, J.-B.; Jang, E.-J.; Charalampopoulos, D.; Wee, Y.-J. (2018). Purification and Characterization of Microbial Protease Produced Extracellularly from Bacillus subtilis FBL-1. Biotechnology and Bioprocess Engineering. v. 23, p. 176-182, 10.1007/s12257-017-0495-3.

Sreelatha, B.; Rao, V. K.; Kumar, R. R.; Girisham, S.; Reddy, S. M. (2017). Culture conditions for the production of thermostable lipase by Thermomyces lanuginosus. Beni-Suef University Journal of Basic and Applied Sciences, v. 6, p. 87–95, http://dx.doi.org/10.1016/j.bjbas.2016.11.010.

Srivastava, N. (2019). Production of Food-Processing Enzymes from Recombinant Microorganisms. Enzymes in Food Biotechnology. Department of Biotechnology, CET-IILM, Greater Noida, India, https://doi.org/10.1016/B978-0-12-813280-7.00043-8.

Sudha, S.; Nandhini, S. U.; Mathumathi, V.; Nayaki, J. M. A. (2018). Production, Optimization and Partial Purification of Protease from Terrestrial Bacterium Exiguobacterium profundam sp. MM1. Biocatalysis and Agricultural Biotechnology, https://doi.org/10.1016/j.bcab.2018.09.002.

Sun, S.; Zhang, Y.; Liu, K.; Chen, X.; Jiang, C.; Huang, M.; Zang, H.; Li, C. (2019). Insight into biodegradation of cellulose by psychrotrophic bacterium Pseudomonas sp. LKR-1 from the cold region of China: optimization of cold-active cellulase production and the associated degradation pathways. Cellulose, https://doi.org/10.1007/s10570-019-02798-y.

Suriya, J.; Bharathiraja, S.; Krishnan, M.; Manivasagan, P.; Kim, S.-K. (2016). Marine Microbial Amylases: Properties and Applications. Advances in Food and Nutrition Research, v. 79, http://dx.doi.org/10.1016/bs.afnr.2016.07.001.

Tacin, M. V.; Massi, F. P.; Fungaro, M. H. P.; Teixeira, M. F. S.; de Paula, A. V.; Ebinuma, V. de C. S. (2018). Biotechnological valorization of oils from agroindustrial wastes to produce lipase using Aspergillus sp. from Amazon Biocatalysis and Agricultural Biotechnology, https://doi.org/10.1016/j.bcab.2018.11.013.

Taskin, M.; Ucar, M. H.; Unver, Y.; Kara, A. A.; Ozdemir, M.; Ortucu, S. (2016). Lipase production with free and immobilized cell sofcold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, v. 8, p. 97–103, http://dx.doi.org/10.1016/j.bcab.2016.08.009.

Teixeira, A. J.; Weschenfelder, L. M.; Antunes, A.; Zeni, J.; Backes, G. T.; Cansian, R. L. (2018). Commercial and non-commercial pectinase and cellulase on the enzymatic hydrolysis efficacy of rice husk and Tifton 85 hay. Acta Scientiarum. Animal Sciences, v. 41, 45100, 10.4025/actascianimsci.v41i1.45100.

Weiss, R.; Eischer, A.; Tadic, T.; Gritsch, S. M.; Ortner, M.; Prall, K.; Neunteufel, E.; F. Putz, R. F.; Guebitz, G. M.; Nyanhongo, G. S. (2020). Valorisation of slaughter house and deinking paper waste streams for the production of enzyme by Trichoderma reesei. Journal of Cleaner Production, v. 275, 122882, https://doi.org/10.1016/j.jclepro.2020.122882.

Werneck, G. C. (2016). Produção De Proteases Por Fungos Endofíticos Isolados De Plantas Do Cerrado. 91 f. Dissertação (Mestrado em Ciências da Saúde). Programa de Pós-Graduação em Ciências da Saúde da Universidade de Brasília.

Wu, F.; Ma, J.; Cha, Y.; Lu, D.; Li, Z.; Zhuo, M.; Luo, X.; Li, S.; Zhu, M. (2020). Using inexpensive substrate to achieve high-level lipase A secretion by Bacillus subtilis through signal peptide and promoter screening. Process Biochemistry, v. 99, p. 202–210, https://doi.org/10.1016/j.procbio.2020.08.010




DOI: https://doi.org/10.34117/bjdv7n1-624

Refbacks

  • There are currently no refbacks.