Bactérias endofíticas: Colonização, benefícios e identificação / Endophytic bacteria: Colonization benefits and identification

Paulo Sérgio Balbino Miguel, Julio Cesar Delvaux, Marcelo Nagem Valério de Oliveira, Reginaldo de Camargo, Miguel Henrique Rosa Franco, Henrique de Araujo Sobreira, Dayane Fonseca Soares, Vitor Hugo Pacheco Jardim

Abstract


Bactérias endofíticas residem nos tecidos internos das plantas em pelo menos uma etapa do seu ciclo de vida, sem causar sintomas aparentes de doença. São representadas por uma grande diversidade bacteriana composta pelos filos Alfa-, Beta- e Gamma-Proteobacteria, Actinobacteria, Firmicutes e Bacteroidetes. Em geral originam de comunidades bacterianas das raízes ou epifíticas, bem como sementes infectadas, podendo ainda, penetrar na planta ou ativamente ou por ferimentos e aberturas naturais. Após a penetração elas podem promover o crescimento vegetal pela produção de compostos promotores de crescimento, sendo ainda responsáveis pela liberação de metabólitos antimicrobianos, que podem suprimir patógenos. Apresentam potencial para utilização na agricultura e na indústria, podendo ser empregadas como vetores para introdução de genes de interesse em plantas, inibidores de patógenos e fontes de metabólitos primários e secundários de interesse. Assim, elas são importantes tanto na ciência básica como na aplicada, sendo de fundamental interesse o seu estudo. Portanto, buscou-se com este trabalho levantar os principais aspectos da interação planta-bactéria endofítica, enfatizando os processos de penetração, colonização e identificação delas na planta, baseando-se nas discussões atuais sobre o assunto.

 

 


Keywords


Bactérias endofíticas, interação, colonização.

References


AFZAL, I.; SHINWARI, Z. K.; SIKANDAR, S.; SHAHZAD, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological research, v. 221, p. 36-49, 2019.

ANJUM, N.; CHANDRA, R. Endophytic bacteria: optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian Journal of Pharmaceutical and Clinical Research, v. 8, n. 2, p. 233-238, 2015.

BACON, CW & HINTON, DM. Bacterial endophytes: The endophytic niche, its occupants, and its utility. In: GNANAMANICKAM, S. S. 1 ed. Plant-Associated Bacteria. Netherlands: Springer. 2007, p. 155-195.

BARAC T, TAGHAVI S, BORREMANS B, PROVOOST A, OEYEN L, COLPAERT, J. V.; VANGRONSVELD, J & VAN DER LELIEL, D. Engineered endophytic bacteria improve phytoremediation of water- soluble, volatile, organic pollutants. Nature Biotechnology. v. 22, p. 583–588, 2004.

BOCHNER, B. R. Global phenotypic characterization of bacteria. FEMS Microbiology Reviews, v. 33, v. 1, p.191–205, 2009.

BUCHANAN, B. B., GRUISSEM, W., and Jones, R. L. (eds.) (2000) Biochemistry and Molecular Biology of Plants. Amer. Soc. Plant Physiologists, Rockville, MD, 2000.

CAI, H.; ARCHAMBAULT, M & PRESCOTT, J. F. 16S ribosomal RNA sequence–based identification of veterinary clinical bacteria. Journal of Veterinary Diagnostic Investigation, v.15, n. 5, p. 465–469, 2003.

CHI, F; SHEN, SH; CHENG, HP; JING, YX; YANNI, YG; DAZZO, FB, Ascending migration of endophytic Rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environmental Microbiology, 71: 7271–7278, 2005.

CHO, S. H.; LEE, K. S.; SHIN, D. S.; HAN, J. H.; PARK, K. S.; LEE, C. H.; PARK, K. A.; KIMAN, S. B. Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. Systematic and Applied Microbiology, v. 33, n. 3, p. 122–127, 2010.

COMPANT, S.; DUFFY, B.; NOWAK, J.; CLÉMENT, C & AIT BARKA, E. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, v. 71, n. 9, p. 4951–4959, 2005.

COMPANT, S; CLÉMENT, C; SESSITSCH, A, Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization, 42: 669-678, 2010.

CONTI, R. Diversidade e atividade antimicrobiana de microrganismos endofíticos da planta medicinal Borreria verticillata L. G. F. W. Meyer. 2007. 73f. Dissertação (Mestrado em Ciências Farmacêuticas) – Universidade Federal de Pernambuco, Recife, PE, 2007.

CORDERO, A. F. P. Diversidade de bactérias endofíticas em frutos de café. 2008. 78f. Tese (Doutorado em Microbiologia Agrícola) – Universidade Federal de Viçosa, Viçosa, MG, 2008.

DE CASTRO, R.D.; MARRACCINI, P. Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, v.18, p.175-199. 2006.

DÖRR, J., T. HUREK, AND B. REINHOLD-HUREK. Type IV pili are involved in plant-microbe and fungus-microbe interactions. Molecular Microbiology. v. 30, p. 7-17, 1998.

DRANCOURT, M.; BOLLET, C.; CARLIOZ, A.; MARTELIN, R.; GAYRAL, J. P.; RAOULT. D. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates. Journal of Clinical Microbiology, v. 38, n. 10, p. 3623–3630, 2000.

ELJOUNAIDI, K.; LEE, S. K.; BAE, H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control, v. 103, p. 62-68, 2016.

FIRDOUS, J.; LATHIF, N. A.; MONA, R.; MUHAMAD, N. Endophytic bacteria and their potential application in agriculture: A review. Indian Journal of Agricultural Research, v. 53, n. 1, p. 1-7, 2019.

FIRÁKOVÁ, S, ŠTURDÍKOVÁ, M.; MÚČKOVÁ, M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia, v.62, n.3, p. 251-257, 2007.

FOUTS, D. E, TYLER, H. L, DEBOY, R. T.; DAUGHERTY, S.; REN, Q.; BADGER, J. H.; DURKIN, A. S.; HUOT, H.; SHRIVASTAVA, S.; KOTHARI, S.; DODSON, R. J.; MOHAOUD, Y.; KHOURI, H.; ROESCH, L. F. W.; KROGFELT, K. A.; STRUVE, C.; TRIPLETT, E. W & METHE, B. A. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genetics. v. 4, n. 7, p. 1-18, 2008.

GONTIJO, J. B.; ANDRADE, G. V. S.; BALDOTTO, M. A.; BALDOTTO, L. E. B. Bioprospecting and selection of growth-promoting bacteria for Cymbidium sp. orchids. Scientia Agrícola, v. 75, n. 5, p. 368-374, 2018.

GOUVEIA, M. J.; ARAÚJO, R. S.; MELLO, M. R. F.; LEITE, T. C. C.; SENA, A. R. Isolamento e avaliação qualitativa de bactérias endofíticas e epfíticas quanto à habilidade de utilizar ácido tânico. Brazilian Journal of Development, v. 6, n. 12, p. 95524-95533, 2020.

HALLMANN, J.; QUADT-HALLMANN, A.; MAHAFFEE, W. F.; KLOEPPER, J.W. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, v.43, n.1, p.895-914. 1997.

HARDOIM, P. R.; OVERBEEK, L. S. V & ELSAS, K. D. V. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology v.16 n.10, p. 463-471, 2008.

HASEGAWA, S.; MEGURO, A.; SHIMIZU, M.; NISHIMURA, T & KUNOH, H. Endophytic Actinomycetes and their interactions with host plants. Actinomycetologica. v. 20, n. 2, p. 72-81, 2006.

HILL, G.T.; MITKOWSKI, A.; Aldrich-Wolfe, L.; EMELEA, L.R.; JURKONIE, D.D.; Ficke, A.; Maldonado-Ramireza, S.; LYNCHA, S.T & NELSON, E. B. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology. v. 15, p. 25–36, 2000.

HONG, C. E.; PARK, J. M. Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art. Plant Biotechnology Reports, v. 10, n. 6, p. 353-357, 2016.

HUREK, B. R; HUREK, T, Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, 14:435–443, 2011.

JANDA, J. M & ABBOTT, S. L. 16S rRNA Gene Sequencing for Bacterial identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. Journal of Clinical Microbiology. v. 45, n. 9, p. 2761–2764, 2007.

JOO, H. S.; DEYRUP, S. T.; SHIM, S. H. Endophyte-produced antimicrobials: a review of potential lead compounds with a focus on quorum-sensing disruptors. Phytochemistry Reviews, p. 1-26, 2020.

KHAN, S. S.; VERMA, V.; RASOOL, S. Diversity and the role of endophytic bacteria: a review. Botanica Serbica, v. 44, n. 2, p. 103-120, 2020.

KIRK, J.; BEAUDETE, L.; HART, M.; MOUTOGLIS, P.; KLIROMONOS, J.; LEE, H & TREVORS, J. Methods of studying soil microbial diversity. Journal of Microbiological Methods, v. 58, n. 2, p. 169-188, 2004.

KUKLINSKY-SOBRAL, J.; ARAÚJO, W. L.; MENDES, R.; GERALDI, I. O.; PIZZIRANI-KLEINER, A. A.; AZEVEDO, J. L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology. v. 6, n. 12, p. 1244-1251, 2004.

LATA, R.; CHOWDHURY, S.; GOND, S. K.; WHITE, J. F. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in applied microbiology, v. 66, n. 4, p. 268-276, 2018.

LIU, H.; CARVALHAIS, L. C.; CRAWFORD, M.; SINGH, E.; DENNIS, P. G.; PIETERSE, C. M.; SCHENK, P. M. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in microbiology, v. 8, p. 2552, 2017.

LIU, S. H.; ZENG, G. M.; NIU, Q. Y.; LIU, Y.; ZHOU, L.; JIANG, L. H.; CHENG, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource technology, v. 224, p. 25-33, 2017.

MAGNANI, G. S.; DIDONET, C. M.; CRUZ, L. M.; PICHETH, C. F., PEDROSA, F. O & SOUZA, E. M. Diversity of endophytic bacteria in Brazilian sugarcane. Journal Genetics and Molecular Research, v.9, n.1, p.250-258, 2010.

MIGNARD, J. P.; FLANDROIS, S. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. Journal of Microbiological Methods, v. 67, n. 3, p. 574–581, 2006.

MIGUEL, P. S. B.; DELVAUX, J. C.; OLIVEIRA, M. N. V.; MONTEIRO, L. C. P.; COSTA, M. D.; TOTOLA, M. R.; BORGES, A. C. Diversity of endophytic bacteria in the fruits of Coffea canephora. African Journal of Microbiology Research, v. 7, n. 7, p. 586-594, 2013.

MIGUEL, P. S. B.; OLIVEIRA, M. N. V.; DELVAUX, J. C.; JESUS, G. L.; BORGES, A. C.; TÓTOLA, M. R.; COSTA, M. D. Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie van Leeuwenhoek, v. 109, n. 6, p. 755-771, 2016.

MIGUEL, P. S. B.; MIGUEL, F. B.; MOREIRA, B. C.; OLIVEIRA, M. N. V.; DELVAUX, J. C.; FREITAS, F. S.; COSTA, M. D. Diversity of the endophytic filamentous fungal leaf community at different development stages of eucalyptus. Journal of Forestry Research, v. 30, n. 3, p. 1093-1103, 2019.

MUTHUKUMAR, A.; UDHAYAKUMAR, R.; NAVEENKUMAR, R. Role of bacterial endophytes in plant disease control. In: Endophytes: Crop Productivity and Protection. Springer, Cham, 2017. p. 133-161.

PADDA, K. P.; PURI, A.; CHANWAY, C. Endophytic nitrogen fixation–a possible ‘hidden’source of nitrogen for lodgepole pine trees growing at unreclaimed gravel mining sites. FEMS Microbiology Ecology, v. 95, n. 11, p. fiz172, 2019.

ROSENBLUETH, M.; MARTÍNEZ-ROMERO, E. Bacterial Endophytes and Their Interactions with Hosts. Molecular Plant-Microbe Interactions MPMI v. 19, n. 8, p. 827–837, 2006.

RYAN, R. P.; GERMAINE, K.; FRANKS, A.; RYAN, D. J & DOWLING, D. N. Bacterial endophytes: recent developments and applications. FEMS Microbiolology Letters. v. 278, n. 1, p. 1–9, 2008.

RUBY, J & Raghunath, M. A Review: Bacterial Endophytes and their Bioprospecting. Journal of Pharmacy Research, v. 4, n. 3, p. 795-799, 2011.

SHIOMI, H. F., SILVA, H. S. A.; MELO, I. N. S.; NUNES, F. V.; BETTIOL, W. Bioprospecting Endophytic Bacteria for Biological Control of Coffee leaf rust. Scientia Agricola, v.63, n.1, p.32-39, 2006.

SICILIANO, S. D., GERMIDA, J.J. Biolog analysis and fatty acid methyl ester profiles indicate that Pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, v. 30, n. 13, p. 1717–1723, 1998.

SILVA, H. S. A.; BETTIOL, W.; TERRASAN, C. R. F.; TOZZI, J. P. L.; MELO, I. S NUNES, F. V. Microrganismos Endofíticos: potencial de uso como agentes de biocontrole da ferrugem do cafeeiro. Boletim de Pesquisa e Desenvolvimento. n. 38, 2006, 25p.

SILVA, H. S. A.; TERRASAN, C. R. F.; TOZZI, J. P. L.; MELO, I. S.; BETTIOL, W. Bactérias endofíticas do cafeeiro e a indução de enzimas relacionadas com o controle da ferrugem (Hemileia vastatrix). Tropical Plant Pathology, v. 33, n. 1, p. 49-54, 2008.

SILVA, C. S.; ARAÚJO, R. G. V.; LIMA, J. R. B.; SANTOS, T. M. C.; NASCIMENTO, M. S.; MONTALDO, Y.; SILVA, J. M. Resistence induction in Brassica oleracea var. acephala to xanthomonas campestris pv. campestris and growth promotion by endophytic/bactéria Indução de resistência em Brassica oleracea var. acephala à Xantomonas campestris pv. campestris e promoção de crescimento por bactérias endofíticas. Brazilian Journal of Development, v. 5, n. 10, p. 22401-22414, 2019.

SINGH, M.; KUMAR, A.; SINGH, R.; PANDEY, K. D. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, v. 7, n. 5, p. 315, 2017.

SPRENT, J. I.; DEFARIA, S. M. Mechanisms of infection of plants by nitrogen-fixing organisms. Plant and Soil, v. 110, n. 2, p. 157–165, 1988.

STACKEBRANDT, E.; EBERS, J. “Taxonomic parameters re-visited: tarnished gold standards,” Microbiology Today, v.33, n. 4, p. 152-155, 2006.

TAGHAVI, S.; DER LELIE, D. V.; HOFFMAN, A.; ZHANG, Y. B.; WALLA, M. D.; VANGRONSVELD, J.; NEWMAN, N.; MONCHY, S. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638. PLoS Genetics. v. 6, n. 5, p. 1-15, 2010.

TEMMERMAN, R.; HUYS, G.; SWINGS, J. Identification of lactic acid bacteria: culture-dependent and culture independent methods. Trends in Food Science & Technology, v.15, n. 7, p.348–359, 2004.

VANDAMME, P.; POT, B.; GILLIS, M.; VOS, P.; KERSTERS, K.; SWINGS, J. Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics. Microbiological Reviews, v. 60, n. 2, p. 407–438, 1996.

VAN DER LELIE, D.; TAGHAVI, S.; MONCHY, S.; SCHWENDER, J.; MILLER, L.; FERRIERI, R.; ROGERS, A.; WU, X.; ZHU, W.; WEYENS, N.; VANGRONSVELD, J.; NEWMAN, L. Poplar and its Bacterial Endophytes: Coexistence and Harmony. Critical Reviews in Plant Science, v. 28, n. 5, p. 346-358, 2009.

VEGA, F. E.; PAVA-RIPOLL, M.; POSADA, F & BUYER, J. S. Endophytic bacteria in Coffea arabica L. Journal Basic Microbiology, v 45, n. 5, p371–380, 2005.

XIE, H.; FENG, X.; WANG, M.; WANG, Y.; KUMAR AWASTHI, M.; XU, P. Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered, v. 11, n. 1, p. 1001-1015, 2020.

WALIA, A.; GULERIA, S.; CHAUHAN, A.; MEHTA, P. Endophytic bacteria: role in phosphate solubilization. In: Endophytes: Crop productivity and protection. Springer, Cham, 2017. p. 61-93.

WOO, P. C. Y.; LAU, S. K. P.; TENG, J. L. L.; TSE, H.; YUEN, K. Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection, v.14, n. 10, p. 908-934, 2008.

ZHANG, H.; SONG, Y. C.; TAN, R. X. Biology and chemistry of endophytes. Natural Product Reports. v. 23, n. 5, p. 753–771, 2006.




DOI: https://doi.org/10.34117/bjdv7n1-595

Refbacks

  • There are currently no refbacks.