Produção de biossurfactante e lipídeos por uma nova cepa de Absidia cylindrospora UCP 1301 isolada do solo da Caatinga usando subprodutos agroindustriais de baixo custo / Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial by-products

Rafael de Souza Mendonça, Antônio Vinícius Pinho Sá, Lucas Albuquerque Rosendo, Renata Andreia dos Santos, Nathalia Sá Alencar do Amaral Marques, Adriana Ferreira Souza, Dayana Montero Rodríguez, Galba Maria de Campos Takaki

Abstract


This study investigated the biotechnological potential of filamentous fungus Absidia cylindrospora UCP 1301 for production of biosurfactant and lipids, using agro-industrial by-products (crude glycerol, corn steep liquor and whey) as low-cost substrates. The experiments were carried out for 96 h, at 28 °C and 150 rpm, using a 2³ full-factorial design (FFD), to evaluate the influence of concentration of each substrate in surface tension and lipids yield. The results showed that the strain was able to produce biosurfactant and to accumulate lipids in the mycelium in all conditions of the FFD, since surface tension values were less than 32 mN/m and the lipid percentage was above 20 %, evidencing that A. cylindrospora is an oleaginous microorganism. However, the lowest value of surface tension (30.2 mN/m) was obtained in condition 4 (5 % crude glycerol and 5 % corn steep liquor), while the higher lipids accumulation (41.21 %) was achieved in condition 6 (5 % crude glycerol, 3 % corn steep liquor and 4 % whey). Statistical analysis confirmed the significant influence of the by-products concentrations used in the production of biosurfactant and lipids, constituting low-cost alternative substrates that make the bioprocess economical and attractive to the industry. In addition, this is the first report on biosurfactant and lipids production by a fungus belonging to the genus Absidia, which is a limited feature for some microorganisms.


Keywords


Mucoralean fungi; tensoactive; oleaginous microorganism; agro-industrial substrates; full-factorial design.

References


ANDRADE, R. F. S., SILVA, T. A. L., RIBEAUX, D. R., RODRÍGUEZ, D. M., SOUZA, A. F., LIMA, M. A. B., LIMA, R. A., SILVA, C. A. A., CAMPOS-TAKAKI, G. M. Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process, Advances in Materials Science and Engineering, 1-12, 2018.

CARVALHO, A. K. F., BENTO, H. B. S., REIS, C. E. R., CASTRO, H. F. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source, Bioresource Technology, 276, 269-275, 2019.

CHATURVEDI, S., BHATTACHARYA, A., NAIN, L., PRASANNA, R., KHARE, S. K., 2019, Valorization of agro-starchy wastes as substrates for oleaginous microbes. Biomass and Bioenergy, 127:105294, 2019.

DVORETSKY, D., DVORETSKY, S., TEMNOV, M., MARKIN, I., BUSHKOVSKAYA, A., GOLUBYATNIKOV, O., & USTINSKAYA, Y. Technology of using municipal wastewater for obtaining Chlorella vulgaris viomass with high lipid content for biofuel production, Chemical Engineering Transactions, 64: 487-492, 2018.

Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M., & da Silva Andrade, R. F. Biosurfactant and bioemulsifier as promissing molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 2020.

KOSA, G., ZIMMERMANN, B., EKEBERG, D., AFSETH, N. K., MOUNIER, J., SHAPAVAL, V. High-Throughput Screening of Mucoromycota Fungi for production of low-and high-value lipid, Biotechnology for biofuels, 11(1): 66, 2018.

LIANG, M. H., & JIANG, J. G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in lipid research, 52(4): 395-408, 2013.

LIMA, M. C., SILVA, T. C. D. M., SOUZA, A. F., LUNA, M. A. C., ANDRADE, F. S. A., SILVA, C. A. A., OKADA, K. Produção simultânea de biomassa e lipídeos utilizando meios contendo resíduos agroindustriais por Mucor subtilíssimus UCP/WFCC 1262, Cunninghamella echinulata UCP/WFCC 1299 e Rhizopus microsporus UCP/WFCC 1304 isolados do solo da caatinga de Pernambuco, Engevista, 19(5): 1417-1430, 2017.

LINS, A. B., BIONE, A. P. M., FONSECA T., C. S., SILVA, T. C., SILVA, P. H., MORANT, K. V., ANDRADE, R. F. S., CAMPOS-TAKAKI, G. M. Biosurfactant production by Cunninghamella phaeosphora UCP 1303 using controlled temperature through of arduino, International journal of current microbiology and applied sciences, 6(12): 2708-2715, 2017.

MARQUES, N. S. A. A., E SILVA, T. A. D. L., DA SILVA ANDRADE, R. F., JÚNIOR, J. F. B., OKADA, K., & TAKAKI, G. M. C. Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum. Technology, 41: e38986, 2019

MARQUES, S. A. A., SILVA, I. G. S., CAVALCANTI, D. L., MAIA, P. C. S. V., SANTOS, V. P., ANDRADE, R. F., CAMPOS-TAKAKI, G. M. Eco-Friendly bioemulsifier production by Mucor circinelloides UCP 0001 isolated from mangrove sediments using renewable substrates for environmental applications, Biomolecules, 10 (3): 365, 2020.

MONTERO-RODRÍGUEZ, D., ANDRADE, R., LIMA, R., SILVA, G., RUBIO-RIBEAUX, D., SILVA, T., ARAUJO, H.,CAMPOS-TAKAKI, G. Conversion of agro-industrial wastes By Serratia marcescens UCP/WFCC 1549 into lipids suitable for biodiesel production, Chemical Engineering Transactions, 49: 307-312, 2016.

MOUSTOGIANNI, A., BELLOU, S., TRIANTAPHYLLIDOU, I. E., AGGELIS, G., 2015, Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non‐aseptic conditions, Biotechnology and bioengineering, 112(4): 827-831, 2015.

Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A. C., Rodríguez D. M., Andrade, R. F. S., Alviano, D. S., Alviano C. S., Barreto-Bergterandré, E., Santiago A. L. C. M. A., Campos-Takaki, G. M. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil frommarine soil, Electronic Journal of Biotechnology, 38: 40-48, 2019.

RIVERA, Á. D., URBINA, M. Á. M., LÓPEZ, V. E. L. Advances on research in the use of agro-industrial waste in biosurfactant production, World Journal of Microbiology And Biotechnology, 35(10): 155, 2019.

SILVA, I. A., RESENDE, A. H M., SILVA, N. M. P. R., BRASILEIRO, P. P. F., AMORIM, J. D. P., LUNA, J. M., RUFINO, R. D., SANTOS, V. A., SARUBBO, L. A. Aplication of biosurfactants produced by Bacillus cereus and Candida sphaerica in the bioremediation of petroleum derivative in soil and water. Chemical Engineering Transactions, 64: 553-558, 2018.

SOUZA, A. F., RODRIGUEZ, D. M., RIBEAUX, D. R., LUNA, M. A., LIMA E SILVA, T. A., ANDRADE, R. F. S., GUSMÃO, N. B., CAMPOS-TAKAKI, G. M. Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. International journal of molecular sciences, 17(10): 1608, 2016.

ZHENG, Y. X., WANG, Y. L., PAN, J., ZHANG, J. R., DAI, Y., CHEN K. Y. Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content, Bioresource technology, 241: 1138-1144. 2017.

KUYUKINA, M. S., IVSHINA, I. B., PHILP, J. C., CHRISTOFI, N., DUNBAR, S. A., RITCHKOVA, M. I., Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction, Journal of Microbiological Methods, 46(2): 149-156, 2001.

MANOCHA, M. S. Lipid composition of Paracoccidioides brasiliensis: comparison between the yeast and mycelial forms, International Society for Human and Animal Mycology, 18: 281-286, 1980.

PELE, M. A., MONTERO-RODRIGUEZ, D., RUBIO-RIBEAUX, D., SOUZA, A. F., LUNA, M. A. C, SANTIAGO, M. F., ANDRADE, R. F. S., SILVA, T. A. L., SANTIAGO, A. L. C. M. A., CAMPOS-TAKAKI, G. M. Development and improved selected markers to biosurfactant and bioemulsifier production by Rhizopus Strains isolated from caatinga soil, African Journal of Biotechnology, 17(6): 150-157, 2018.

SANTOS, D. K. F., RUFINO, R. D., LUNA, J. M., SANTOS, V. A., & SARUBBO, L. A. Biosurfactants: multifunctional biomolecules of the 21st century. International journal of molecular sciences, 17(3): 401, 2016.

GALÁN, G., MARTÍN, M., & GROSSMANN, I. Integrated renewable production of ETBE from switchgrass. ACS Sustainable Chemistry & Engineering, 7(9): 8943-8953, 2019.

BERGER, L.R.R.; CARDOSO, A; STAMFORD, T. C. M.; CAVALCANTE, H. M. M.; MACEDO, R. O.; CAMPOS-TAKAKI, G. M. Agroindustrial waste as alternative médium in the production of chitin and chitosan by Rhizopus arrhizus – A factorial design. Asian Chitin Journal, 7(2): 83-90, 2011.

ZHANG, T. Y., Yu, Y., ZHU, H., YANG, S. Z., YANG, T. M., ZHANG, M. Y., & ZHANG, Y. X. Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. International Journal of Systematic and Evolutionary Microbiology, 68(8): 2468-2472, 2018.

NOVAES, C. F., SOUZA, A. F., FEREIRA, I. N. S., ANDRADE, R. F. S., CAMPOS-TAKAKI, G. M. Produção sustentável de biomassa oleaginosa por Rhizopus arrhizus var. Arrhizus UCP 1295 utilizando cenoura descartada como fonte de carbono alternativa. In: Anais do XVII Encontro Nacional de Estudantes de Engenharia Ambiental e V Fórum Latino-Americano de Engenharia e Sustentabilidade. Anais João Pessoa (PB) UFPB, 2019.

MOUSTOGIANNI, A., BELLOU, S., TRIANTAPHYLLIDOU, I. E., AGGELIS, G. Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non‐aseptic conditions. Biotechnology and Bio Engineering, 112(4): 827-831, 2015.

DEAN, A. P., SIGEE, D. C., ESTRADA, B., PITTMAN, J. K. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12): 4499-4507, 2010

KANG, N. K., JEON, S., KWON, S., KOH, H. G, SHIN, S. E., LEE, B., CHOI, G. G., YANG, J. W., JEONG B. R., CHANG, Y. K. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in nannochloropsissalina. Biotechnology for Biofuels, 8(1): 200, 2015.

WANG, X., FOSSE, H. K., Li, K., CHAUTON, M., VADSTEIN, O., REITAN, K. I. Influence of nitrogen limitation on lipid accumulation and epa and dha content in four marine microalgae for possible use in aquafeed. Frontiers Marine Science, 6(95), 2019.




DOI: https://doi.org/10.34117/bjdv7n1-564

Refbacks

  • There are currently no refbacks.