Identification, characterization enzymatic antagonist activity and antimicrobial resistance profile of bacteria isolated from Brazilian thermal aquifer / Identificação, caracterização enzimática, atividade antagonista e perfil de resistência a antimicrobianos de bactérias termotolerantes isoladas em aquífero termal Brasileiro

Léia Cardoso, Mauro Aparecido de Sousa Xavier, Paula Ericson Guilherme Tambellini, Fábio Floriano Haesbaert, Anna Christina de Almeida, Vanessa de Andrade Royo, Alessandra Rejane Ericsson de Oliveira Xavier

Abstract


O objetivo deste trabalho foi isolar identificar, rastrear enzimas de interesse biotecnológico, traçar o perfil de resistência a antimicrobianos e verificar a atividade antagonista de microrganismos termotolerantes isolados em aquífero termal em Caldas Novas, Brasil. Para tal foram coletadas amostras de águas profundas em três poços artesianos, inoculadas em ágar nutriente e incubadas a 37°C durante 24 horas. Os isolados foram identificados ao nível de espécie por espectrometria de massa MALDI-TOF. As espécies identificadas foram submetidas ao screening enzimático para amilase, celulase, gelatinase, caseinase, lipase e pectinase conforme metodologias padrão. O perfil de susceptibilidade das bactérias aos antimicrobianos foi realizado por disco difusão e a atividade antagonista foi avaliada frente à Escherichia coli ATCC 8739 e Staphilococcus aureus ATCC 25923. Foram obtidas quatro isolados identificados como Bacillus pumilus, Bacillus subtilis e dois Bacillus megaterium. Os isolados produziram caseinase e gelatinase e foram sensíveis a todos os antimicrobianos testados. Bacillus pumilus, Bacillus subtilis e B. megaterium 3207 exibiram atividade antagonista frente ao S. aureus. A atividade antagonista frente à cepa de S. aureus aqui encontrada abre uma perspectiva para futuros estudos de identificação de metabólitos secundários com potencial atividade antimicrobiana


Keywords


Antagonismo, Bioprospecção, Enzimas, Hot Springs, MALDI-TOF.

References


Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol, 2015; 46(2):443-453. Doi: 10.1590/S1517-838246220140219

Alrumman S, Mostafa Y, Al-Qahtani ST, Sahlabji T, Taha T. Antimicrobial activity and GC-MS analysis of bioactive constituents of Thermophilic bacteria isolated from Saudi hot springs. Arab J Sci Eng, 2018; 44(1):75-85. Doi: 10.1007/s13369-018-3597-0

Andrade A, Almeida L. Comportamento do nível potenciométrico do aquífero termal de Caldas Novas-GO e medidas de restrição e controle aplicadas pelo Departamento Nacional de Produção Mineral (DNPM). Rev Águas Subterrâneas, 2012;26(1):99-112.

Assis GBN, Pereira FL, Zegarra AU, Tavares GC, Leal CA, Figueiredo HCP. Use of MALDI-TOF mass spectrometry for the fast identification of Gram-positive fish pathogens. Front Microbiol, 2017;8:1492. Doi: 10.3389/fmicb.2017.01492

Banin E, Hughes D, Kuipers OP. Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol Rev, 2017;41:450-452. Doi: doi.org/10.1093/femsre/fux016

Bhaturiwala RA, Jha SC, Jain NK, Modi HA. Enzyme profiling of selected chitinase producing Actinomycetes. European J Biotechnol Biosci, 2017;5(1):39-43.

Berrada I, Willems A, De-Vos P, El-Fahime EM, Swings J, Bendaou N, Melloul M, Amar M. Diversity of culturable moderately halophilic and halotolerant bacteria in a marsh and two salterns a protected ecosystem of Lower Loukkos (Morocco). Afr J Microbiol Res, 2012; 6(10):2419-2434. Doi: 10.5897/AJMR-11-1490

Bischoff KM, Rooney AP, Li XL, Liu S, Hughes SR. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol Lett, 2006; 28(21):1761-1765. Doi: 10.1007/s10529-006-9153-0

Bodhankar S, Grover M, Hemanth S, Reddy G, Rasul S, Yadav SK, Desai S, Mallappa M, Mandapaka M, Srinivasarao C. Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech, 2017;7:232. Doi: 10.1007/s13205-017-0860-0

Boottanun P, Potisap C, Hurdle JG, Sermswan RW. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express, 2017; 7(1):16. Doi: 10.1186/s13568-016-0302-0

Campos JEG, Cunha LS. Caracterização hidrogeológica da ocorrência de aquífero termal no Distrito Federal. Geociências, 2015; 34(2):210-223.

Chiriac CM, Szekeres E, Rudi K, Baricz A, Hegedus A, Dragoş N, Coman C. Differences in temperature and water chemistry shape distinct diversity patterns in thermophilic microbial communities. Appl Environ Microbiol, 2017;83:e01363-17. Doi: 10.1128/AEM.01363-17

Chiriac CM, Baricz A, Szekeres E, Rudi K, Dragoș N, Coman C. Microbial composition and diversity patterns in deep hyperthermal aquifers from the Western plain of Romania. Microb Ecol, 2018;75(1):38-51. Doi: 10.1007/s00248-017-1031-x

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28 ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2018.

Comité de l'Antibiogramme de la Société Française de Microbiologie-EUCAST Recommandation CASFM/EUCAST: Société Française de Microbiologie (in French), 2019.

Connor N, Sikorski J, Rooney AP, Kopac S, Koeppel AF, Burger A, Cole SG, Perry EB, Krizanc D, Field NC, Slaton M, Cohan FM. Ecology of speciation in the genus Bacillus. Appl Environ Microbiol, 2010;76(5):1349-1358. Doi: 10.1128/AEM.01988-09

Dalmaso GZL, Lage CAS, Mazotto AM, Dias EPS, Caldas LA, Ferreira D, Vermelho AB. Extracellular peptidases from Deinococcus radiodurans. Extremophiles, 2015;19:989-999. Doi: 10.1007/s00792-015-0773-y

Gómez-Ríos D, Ramírez-Malule H. Bibliometric analysis of recent research on multidrug and antibiotics resistance (2017-2018). J Appl Pharm Sci, 2019; 9(05):112-116. Doi: 10.7324/JAPS.2019.90515

Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. Biotechnological processes in microbial amylase production. BioMed Res Int, 2017; Article ID 1272193. Doi: 10.1155/2017/1272193

Grenni P, Ancona V, Caracciolo AB. Ecological effects of antibiotics on natural ecosystems: A review. Microch J, 2018;136:25-39. Doi: 10.1016/j.microc.2017.02.006

Ismail A, Ktari L, Ahmed M, Bolhuis H, Boudabbous A, Stal LJ, Cretoiu MS, El Bour M. Antimicrobial activities of bacteria associated with the brown alga Padina pavonica. Front Microbiol, 2016;7:1072. Doi: 10.3389/fmicb.2016.01072

Jardine J, Mavumengwana V, Ubomba-Jaswa E. Antibiotic resistance and heavy metal tolerance in cultured bacteria from hot spring as indicators of environmental intrinsic resistance and tolerance levels. Environ Pollut, 2019;249:696-702. Doi: 10.1016/j.envpol.2019.03.059

Jiménez-Delgadillo R, Valdés-Rodríguez SE, Olalde-Portugal V. Effecto del pH y temperatura sobre el crescimiento y actividad antagónica de Bacillus subtilis sobre Rhizoctonia solani. Rev Mex Fitopatol, 2018;36(2):256-275. Doi: 10.18781/R.MEX.FIT.1711-3

Kaki AA, Ali MK, Milet A, Moula N, Thonart P, Chaouche NK. In vitro control and biofertilization features study of a Bacillus amyloliquefaciens (4RH) strain isolated from a hot spring soil in Algeria. Afr J Microbiol Res, 2017;11(43):1564-1572. Doi: 10.5897/AJMR2017.8745

Kumar M, Yadav A, Tiwari R, Prasanna R, Saxena A. Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Bioprospect Dev, 2014; 1(3):1000127. Doi: 10.4172/ijbbd.1000127

Luz BDS, Bicas JLm Sarrouh B, Lofrano RCZ. Bioprospecção de microrganismos produtores de enzimas de interesse industrial realizada no Parque Estadual Serra do Ouro Branco, Brasil. Interbio, 2016; 10(1): 13-24. ISSN: 1981-3775

Lunardi M, Bonotto DM. Hydrochemical study of the Caldas Novas Thermal Complex (GO), Brazil. Environ Earth Sci, 2018;77:71. Doi: 10.1007/s12665-018-7240-x

MacFaddin JF. Biochemical tests for identification of medical bacteria. 3rd ed. Buenos Aires, Argentina: Editorial Médica Panamericana, 2003.

McDade JJ, Weaver RH. Rapid methods for the detection of gelatin hydrolysis. J Bacteriol, 1959; 77:60-64.

Mahajan GB, Balachandran L. Source of antibiotics: Hot springs. Biochem Pharmacol, 2017;134:35-41. Doi: 10.1016/j.bcp.2016.11.021

Minotto E, Milagre LP, Oliveira MT, Van-Der-Sand ST. Enzyme characterization of endophytic actinobacteria isolated from tomato plants. J Adv Sci Res, 2014;5(2):16-23.

Moënne-Loccoz Y, Mavingui P, Combes C, Normand P, Steinberg C. 2015. Microorganisms and biotic interactions. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T. eds. Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht: 395-444. Doi: 10.1007/978-94-017-9118-2_11

Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C. Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol, 2017; Article ID: 6943952. Doi: 10.1155/2017/6943952

Mohammadou BA, Le-Blay G, Mbofung CM, Barbier G. Antimicrobial activities, toxinogenic potential and sensitivity to antibiotics of Bacillus strains isolated from Mbuja, an Hibiscus sabdariffa fermented seeds from Cameroon. Afr J Biotechnol, 2014;13(35):3617-3627. Doi: 10.5897/AJB2014.13907

Nascimento FX, Hernández AG, Glick BR, Rossi MJ. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol Rep, 2020;25:e00406. Doi: 10.1016/j.btre.2019.e00406

Oumer OJ, Abate D. Characterization of pectinase from Bacillus subtilis strain Btk 27 and its potential application in removal of mucilage from coffee beans. Enzyme res, 2017;Article ID: 7686904. Doi: 10.1155/2017/7686904

Pandya U, Prakash S, Shende K, Dhuldhaj U, Saraf M. Multifarious allelochemicals exhibiting antifungal activity from Bacillus subtilis MBCU5. 3 Biotech, 2017;7:175. Doi: 10.1007/s13205-017-0827-1

Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev, 2018; 31(4):1-61. Doi: 10.1128/CMR.00088-17

Pednekar P, Jain R, Mahajan G. Anti-infective potential of hot-spring bacteria. J Glob infect Dis, 2011;3(3):241-245. Doi: 10.4103/0974-777X.83529

Peng N, Han W, Li Y, Liang Y, She Q. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Sci China Life Sci, 2017;60:370-385. Doi: 10.1007/s11427-016-0355-8

Prieto-Barajas CM, Elorza-Gómez JC, Loeza-Lara PD, Sánchez-Yáñez JM, Valencia-Cantero E, Santoyo G. Identificación y análisis de genes ars en cepas de Bacillus hipertolerantes al arsénico, aisladas de pozas termales en Araró, México. TIP Rev Esp Cienc Quím Biol, 2018;21(Supl. 1):22-29. Doi: 10.22201/fesz.23958723e.2018.0.145

Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech, 2017;7:118. Doi: 10.1007/s13205-017-0762-1

Saxena A, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L. Microbial Diversity of Extreme Regions: An Unseen Heritage and Wealth. Indian J Plant Genet Res, 2016;29(3):246-248. Doi: 10.5958/0976-1926.2016.00036.X

Shanker S, Pindi P, Shankar G. Characterization of effective bio-control agent Bacillus sp. SRB 27 with high salt tolerance and thermostability isolated from forest soil sample. Afr J Biotechnol, 2014; 13 (25): 2547-2555. doi: 10.5897/AJB2013.12852. Doi: 10.5897/AJB2013.12852

Sharp CE, Brady AL, Sharp GH, Grasby SE, Stott MB and Dunfield PF. Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J, 2014;8:1166. Doi: 10.1038/ismej.2013.237

Selim S, Sherif ME, El-Alfy S, Hagagy N. Genetic diversity among thermophilic bacteria isolated from geothermal sites by using two PCR typing methods. Geomicrobiol J, 2014; 31(2):161-170. Doi: 10.1080/01490451.2013.822614

Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Anton Leeuw, 1957;23:15-22. Doi: 10.1007/BF02545855

Thebti W, Riahi Y, Gharsalli R, Belhadj O. Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia. Acta Biochim Pol, 2016; 63(3):581-587. Doi: 10.18388/abp.2016_1271

Torimiro N, Okonji R. A comparative study of pectinolytic enzyme production by Bacillus species. Afr J Biotechnol, 2013;12(46):6498-6503. Doi: 10.5897/AJB2013.12421

Uddin ME, Ahmad T, Ajam MM, Moniruzzaman M, Mandol D, Ray SK, Sufian A, Rahman MA, Hossain E, Ahammed T. Thermotolerant extracellular proteases produced by Bacillus subtilis isolated from local soil that representing industrial applications. J Pure Appl Microbiol, 2017;11(2):733-741. Doi: 10.22207/JPAM.11.2.12

Xavier AREO, Lima ER, Oliveira AME, Cardoso L, Santos J, Cangussu CHC, Leite LN, Quirino MCL, Júnior IGC, Oliveira DA, Xavier MAS. Genetic diversity of Bacillus sp producers of amylase isolated from the soil. Genet Mol Res, 2017;16(3): 10.4238/gmr16039771. Doi: 10.4238/gmr16039771

Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M. Biological ; activity of lipopeptides from Bacillus. Appl Microbiolo Biotechnol, 2017; 101: 5951-5960. Doi: 10.1007/s00253-017-8396-0

Yadav P, Korpole S, Prasad GS, Sahni G, Maharjan J, Sreerama L, Bhattarai T. Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal. J Appl Biol Biotechnol, 2018; 6(3):1-8. Doi: 10.7324/JABB.2018.60301




DOI: https://doi.org/10.34117/bjdv7n1-559

Refbacks

  • There are currently no refbacks.