Simultaneous Isomerization and Fermentation (SIF) of sugarcane bagasse hydrothermal hemicellulose hydrolysate / Isomerização e fermentação simultâneas (SIF) de hidrolisado hemicelulósico hidrotérmico de bagaço de cana

Authors

  • Márcio Daniel N. Ramos
  • Teresa C. Zangirolami
  • Raquel L. C. Giordano
  • Thais S. Milessi

DOI:

https://doi.org/10.34117/bjdv7n1-545

Keywords:

sugarcane bagasse, hydrothermal pretreatment, inhibitors, xylose isomerase.

Abstract

The production of bioethanol from lignocellulosic by-products, such as sugarcane bagasse, stands out as a renewable and sustainable approach to mitigate climate changes. These lignocellulosic materials are mainly composed of polymers that, after a pretreatment step, release fermentable sugars. Hydrothermal pretreatment, in turn, is a technique considered environmentally attractive because it is based on the use of steam, without the use of solvents. The mainly sugar released in this stage (the pentose xylose) is not assimilated by the yeast Saccharomyces cerevisiae. The use of the enzyme xylose isomerase to isomerize xylose to xylulose, which can be consumed by the microorganism in the SIF process (Simultaneous Isomerization and Fermentation), poses as a possible route for the utilization of hydrothermal hydrolysates. Considering that inhibitors of the microbial metabolism are also generated during the pretreatment, the present work evaluated the performance of xylose SIF in sugarcane bagasse hydrothermal hydrolysate using xylose isomerase co-immobilized with S. cerevisiae in Ca-alginate gel. The presence of inhibitors in the hydrolysate significantly influenced the process, with a decrease in xylose assimilation rate from 3.9 g/L/h to 2.6 g/L/h and in ethanol productivity from 1.2 g/L/h to 0.5 g/L/h, when compared to the synthetic medium. However, cell viability was not affected and strategies such as increasing the concentration of biocatalyst and detoxification of the hydrolysate could be applied to improve its performance.

References

AGUIAR A.; MILESSI, T.S.; MULINARI, D.R.; LOPES, M.S.; COSTA, S.M.; CANDIDO, R.G. Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications. Biomass & Bioenergy, v.144, p.105896, 2021.

ARRUDA, P.V.; CHAUD, L.C.S.; FELIPE, M.G.A.; PIVETTA, L.R. Efeito da destoxificação do hidrolisado de bagaço de cana sobre a remoção de fenóis, a perda de açúcares e a bioconversão de xilose em xilitol. Nucleus., v. 5, p. 166-182, 2008.

BARBOSA, A.S.; SANTOS, S.V.G.; ALMEIDA, L.C.; KOPP, W.; TARDIOLI, P.W.; GIORDANO, R.L.C.; LIMA, A.S.; SOARES, C.M.F. Hydrophobic immobilization of Burkholderia cepacia lipase onto octyl-silica for synthesis of flavors esters. Brazilian Journal of Development, v.6, p. 27145-27170, 2020. DOI:10.34117/bjdv6n5-242

BUDRIENE, S.; GOROCHOVCEVA, N.; ROMASKEVIC, T.; et al. Galactosidase from Penicillium canescens. Properties and immobilization. Central European Journal of Chemistry, v.3, p. 95–105, 2005.

CANILHA, L.; CHANDEL, A.K.; MILESSI, T.S.S.; et al. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. Journal of Biomedicine and Biotechnology, v.2012, doi: 10.1155/2012/989572

CHANDEL, A.K.; GARLAPATI, V.K.; SINGH, A.K.; ANTUNES, F.A.F.; SILVA, S.S. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 2018, 264, 370-381.

CHEN, H. Lignocellulose biorefinery feedstock engineering. In: CHEN, H. Lignocellulose Biorefinery Engineering. Ed. Elsevier Inc, 2015.

CUNHA, J.T.; ROMANÍ, A.; COSTA, C.E.; SÁ-CORREIA, I.; DOMINGUES, L.. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Applied Microbiology and Biotechnology, v. 103, n. 1, p. 159–175, 2019. DOI: 10.1007/s00253-018-9478-3.

GIORDANO, R.L.C.; GIORDANO, R.C.; COONEY, C.L. A study on intra-particle diffusion effects in enzymatic reactions: glucose-fructose isomerization. Bioprocess Eng., v. 23, p. 159-166, 2000.

GÍRIO, F.M.; FONSECA, C.; CARVALHEIRO, F.; DUARTE, L.C.; MARQUES, S.; BOGEL-LUKASIK, R. Hemicelluloses for fuel ethanol: A review. Bioresouce Technology, v.101, p.4775-4800, 2010.

HAMELINCK, C.N.; HOOIJDONK, G.V.; FAAIJ, A.P.C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg., v. 28, p. 384-410, 2005.

JANIS, J.; PASANEN, S.; ROUVINEN, J.; VAINIOTALO, P. Characterization of the pH-dependent dissociation of a multimeric metalloprotein Streptomyces rubiginosus xylose isomerase by ESI FT-ICR mass spectrometry. J. Mass Spectrom., v.43, p. 1376–1380, 2008.

LADISCH, M.R.; EMERY, A.; RODWELL, V. W. Economic implications of purification of glucose isomerase prior to immobilization, Industrial & Engineering Chemistry: Process Design & Development, v. 16, p. 309-313, 1977.

LARSSON, S.; PALMQVIST, E.; HAHN-HÄGERDAL, B.; TENGBORG, C.; STENBERG, K.; ZACCHI, G.; NILVEBRANT, N.O. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24, p.151–159, 1999. doi:10.1016/S0141-0229(98)00101-X.

LIM, L. H.; SAVILLE, B. A. Thermoinactivation Mechanism of Glucose Isomerase, Applied Biochemistry and Biotechnology, v. 115 p. 136–140, 2007.

MILESSI, T.S.; SILVA, C.R.; MORAES, G.S.; AQUINO, P.M.; GIORDANO, R.C. GIORDANO, R.L.C.; ZANGIROLAMI, T.C. Continuous 2G ethanol production from xylose in a fixed-bed reactor by native Saccharomyces cerevisiae strain through simultaneous isomerization and fermentation. Cellulose, v. 27, p. 4429-4442, 2020a.

MILESSI., T.S.; PEREZ, C.L.; ZANGIROLAMI, T.C.; CORRADINI, F.A.S.; SANDRI, J.P.; FOULQUIÉ-MORENO, M.R.; GIORDANO, R.C.; THEVELEIN, J.M.; GIORDANO, R.L.C. Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed bed reactor. Biotechnology for Biofuels, 13:85, 2020b.

MILESSI, T.S.S.; ANTUNES, FAF.; CHANDEL, A..K.; SILVA, S.S. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring. Bioengineered, v.6, 9.26-32, 2015,

MORAES, M.J.; OLIVEIRA, M.S.; BARBOSA, E.G.; SILVA, M.F.L.;ARAÚJO, M.E.V. Characterization of pequi shell (caryocar brasiliense camb.) For its use as a biomass. Brazilian Journal of Development, v.6, p.26689-26704, 2020. DOI:10.34117/bjdv6n5-212

MOHD AZHAR, S.H.; ABDULLA, R.; JAMBO, S.A.; MARBAWI, H.; GANSAU, J.A.; MOHD FAIK, A.A.; RODRIGUES, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Reports. v.10, p. 52–61, 2017. doi:10.1016/j.bbrep.2017.03.003.

MOSIER, N.S. Cellulosic ethanol biofuel beyond corn. In: DAHIYA, A. Bioenergy. Ed. Elsevier Inc., 2020.

NITSOS, C.K.; MATIS, K.A.; TRIANTAFYLLIDIS, K.S. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chem. Sus. Chem., v.6, p.110-122, 2013.

PRATTO, B.; SOUZA, R.B.A.; SOUZA JR, R.; CRUZ, A.J.G. Enzymatic Hydrolysis of Pretreated Sugarcane Straw: Kinetic Study and Semi-Mechanistic Modeling. Appl. Biochem. Biotechnol. 2016, DOI 10.1007/s12010-015-1957-8.

RAZMOVSKI, R.; VUCUROCIC, V. Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel, v.92, p.1-8, 2012.

RODRÍGUEZ-ZÚÑIGA, U.F.; FARINAS, C.S.; CARNEIRO, R.L.; SILVA, G.M.; CRUZ, A.J.G.; GIORDANO, R.L.C.; GIORDANO, R.C.; RIBEIRO, M.P.A. Fast Determination of the Composition of Pretreated Sugarcane Bagasse Using Near-Infrared Spectroscopy. Bioenerg. Res., v. 7, p. 1441-1453, 2014.

SANDRI, J.P. Obtenção e caracterização de levedura recombinante com elevada tolerância a etanol por engenharia evolutiva. 2013. 132 f. Dissertação (Mestrado em engenharia química) – Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos. 2013.

SANTIAGO, B.L.S.; RODRIGUES, F.A. Processamento de biomassa lignocelulósica para a produção de etanol: uma revisão. The Journal of Engineering and Exact Sciences., v. 3, n. 7, p. 1011-1022, 2017.

SHULER, M.L.; KARGI, F. Bioprocess Engineering: Basic Concepts. 2nd edition. Prentice Hall Inc., 2002. 576p.

SILVA, C.R.; ZANGIROLAMI, T.C.; RODRIGUES, J.P.; MATUGI, K.; GIORDANO, R.C.; GIORDANO, R.L.C. An innovative biocatalyst for production of etanol from xylose in a continuous bioreactor. Enzyme and Microbial Technology, v.50, p.35-42, 2012.

VANMARCKE, G. Unraveling the polygenic basis of HMF and furfural tolerance in yeast for optimization of lignocellulose-based processes. PhD Thesis, KU Leuven Belgium.

ZIOLKOWSKA, J.R. Biofuels technologies: An overview of feedstocks, processes, and technologies.In: Biofuels for a More Sustainable Future. Ed. Elsevier Inc., 2020.

Published

2021-01-21

How to Cite

N. Ramos, M. D., C. Zangirolami, T., L. C. Giordano, R., & Milessi, T. S. (2021). Simultaneous Isomerization and Fermentation (SIF) of sugarcane bagasse hydrothermal hemicellulose hydrolysate / Isomerização e fermentação simultâneas (SIF) de hidrolisado hemicelulósico hidrotérmico de bagaço de cana. Brazilian Journal of Development, 7(1), 8029–8042. https://doi.org/10.34117/bjdv7n1-545

Issue

Section

Original Papers