Protocol and system for acquisition and processing EEG and SEMG signals for lower limbs rehabilitation use / Protocolo e sistema para aquisição e processamento de sinais EEG e SEMG para uso de reabilitação de membros inferiores

Douglas Ruy Soprani da Silveira Araújo, Thomaz Rodrigues Botelho, Camila Rodrigues de Carvalho e Carvalho, Jessica Paola Souza Lima, Eduardo Rocon de Lima, Anselmo Frizera Neto, André Ferreira

Abstract


Purpose: This work proposes a protocol and system for signal acquisition, synchronization and processing of as superficial electromyography (sEMG) and electroencephalography (EEG) signals. The outputs of the system can be applied in rehabilitation robotic devices and used by patients with physical disabilities. Assistive devices, as exoskeletons, can make use of physiological data as sEMG and EEG, to detect movement intentions. Methods: An integrated system was developed with sEMG and EEG electrodes, Inertial Sensors and a Processing Unit in order to perform experiments and to acquire physiological data. Each experiment was performed by ten healthy subjects and composed by 30 repetitions of extension and flexion of the knees. The goal is to analyze movement intention, muscle activation and movement onset. Results: Results showed that the proposed system and protocol are able to acquire, synchronize, process and classify the signals. Analyses about the accuracy of the classifiers showed that the interface was able to identify movement intention. Using an OR logic between the EEG and sEMG signals improved the detection accuracy of the whole system up to 92%, from approximately 80% using only sEMG signal and 60% using only EEG signal. Conclusion: The results show that the proposed protocol can be used acquire, process and improve movement intention using EEG and sEMG signals. This portable protocol can be potentially used to control devices and support the therapy of patients who need physical rehabilitation, they can benefit from robotic rehabilitation aiming at improving the efficiency of recovery.

 

 


Keywords


Electroencephalography (EEG), Surface Electromyography (sEMG), Inertial Sensors (IMU), Signal Acquisition Protocol, Signal Processing, Robotic Rehabilitation.

Full Text:

PDF

References


Benevides A, Bastos Filho TF, Sarcinelli Filho M. Mental Task Recognition Based on EEG for Commanding a Robotic Wheelchair. 3rd Applied Robotics and Collaborative Systems Engineering (Robocontrol 08). 2008. p. 8.

Bertrand O, Perrin F, Pernier J. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalography and clinical neurophysiology. 1985;62(6):462–4. doi: http://dx.doi.org/10.1016/0168-5597(85)90058-9.

Botelho T, Soprani D, Rodrigues C, Ferreira A, Frizera A. Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano. Revista Iberoamericana de Automatica e Informatica Industrial. v. 14, p. 362-371, 2017. doi: https://doi.org/10.1016/j.riai.2017.07.002

Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006 Oct 11;26(41):10564–8. doi: http://dx.doi.org/10.1523/JNEUROSCI.2266-06.2006.

Corbett EA, Perreault EJ, Körding KP. Decoding with limited neural data: a mixture of time-warped trajectory models for directional reaches. Journal of neural engineering. 2012 Jun;9(3):036002. doi: http://dx.doi.org/10.1088/1741-2560/9/3/036002.

Deecke L, Scheid P, Kornhuber HH. Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Experimental Brain Research. 1969;7(2):158–68. doi: http://dx.doi.org/10.1007/BF00235441.

Gallego JÁ, Ibáñez J, Dideriksen JL, Serrano JI, del Castillo MD, Farina D, et al. A multimodal human–robot interface to drive a neuroprosthesis for tremor management. IEEE Transactions on Systems, Man, and Cybernetics. 2012;42(6):1159–68.

Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006.

Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography. 1999.

Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE transactions on bio-medical engineering. 2011 Oct;58(10):2867–75. doi: http://dx.doi.org/10.1109/TBME.2011.2161671.

Hudgins B, Parker P, Scott RN, A New Strategy for Multifunction Myoelectric Control, IEEE Transactions on Biomedical Engineering 40 (1) (1993) 82–94. doi:10.1109/10.204774.

Ibáñez J, Serrano JI, del Castillo MD, Gallego J a., Rocon E. Online detector of movement intention based on EEG—Application in tremor patients. Biomedical Signal Processing and Control. 2013 Nov;8(6):822–9. doi: http://dx.doi.org/10.1016/j.bspc.2013.07.006.

Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D. A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology. International Federation of Clinical Neurophysiology; 2015;126(1):154–9. doi: http://dx.doi.org/10.1016/j.clinph.2014.05.003.

Ju M-S, Lin C-CK, Lin D-H, Hwang I-S, Chen S-M. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society. 2005 Sep;13(3):349–58. doi: http://dx.doi.org/10.1109/TNSRE.2005.847354.

Kirchner EA, Tabie M, Seeland A. Multimodal movement prediction - towards an individual assistance of patients. PloS one. 2014 Jan;9(1):e85060. doi: http://dx.doi.org/10.1371/journal.pone.0085060.

Lotze M. Motor learning elicited by voluntary drive. Brain. 2003;126(4):866–72. doi: http://dx.doi.org/10.1093/brain/awg079.

Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. The Journal of physiology. 2012 Apr 1;590(Pt 7):1669–82. doi: http://dx.doi.org/10.1113/jphysiol.2011.222851.

Niazi I. K., Jiang N., Tiberghien O., Nielsen J. F., Dremstrup K., Farina D. (2011). Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 8:066009. 10.1088/1741-2560/8/6/066009

Novak D, Omlin X, Leins R, Riener R. Predicting targets of human reaching motions using different sensing technologies. IEEE Trans Biomed Eng. 2013;(60):2645–54.

Oviatt S. Multimodal Interfaces. The Human-Computer Interaction Handbook. 2nd ed. 2002. p. 413–32.

Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 1999 Nov;110(11):1842–57.

Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical rehabilitation. 2007 Jan;21(1):17–27. doi: http://dx.doi.org/10.1177/0269215506071281.

Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2006 Nov;117(11):2341–56. doi: http://dx.doi.org/10.1016/j.clinph.2006.04.025.

Tsukahara A, Hasegawa Y, Sankai Y. Standing-up motion support for paraplegic patient with Robot Suit HAL. 2009 IEEE International Conference on Rehabilitation Robotics. Ieee; 2009 Jun;211–7. doi: http://dx.doi.org/10.1109/ICORR.2009.5209567.

Vidaurre C, Sannelli C, Müller K-R, Blankertz B. Co-adaptive calibration to improve BCI efficiency. Journal of Neural Engineering. 2011;8(2):025009. doi: http://dx.doi.org/10.1088/1741-2560/8/2/025009.

Xu R., Jiang N., Vuckovic A., Hasan M., Mrachacz-Kersting N., Allan D., et al. . (2014c). Movement-related cortical potentials in paraplegic patients: Abnormal patterns and considerations for BCI-rehabilitation. Front. Neuroeng. 7:35. 10.3389/fneng.2014.00035




DOI: https://doi.org/10.34117/bjdv7n1-527

Refbacks

  • There are currently no refbacks.