Entendendo alguns mecanismos de resistência a inseticidas tendo como exemplo o pulgão-verde Myzus persicae (SULZER, 1776) (HEMIPTERA: APHIDIDAE). / Understanding some mechanisms of resistance to insecticides having an example of the green peach aphid Myzus persicae (SULZER, 1776) (HEMIPTERA: APHIDIDAE).

Márcio Pereira, Cátia Jacira Martins de Moura

Abstract


O uso intensivo de inseticidas tem causado diversos problemas para o ambiente além de selecionar pragas resistentes a esses produtos, exigindo um aumento da concentração e número de aplicações. O pulgão-verde Myzus persicae é um exemplo de inseto que apresenta populações resistentes a várias classes desses defensivos agrícolas. O entendimento dos mecanismos usados por esses pulgões para superar a ação de diferentes inseticidas a que são expostos permite entender melhor como esse mesmo processo ocorre em outras espécies de insetos. A proposta dessa revisão foi selecionar e avaliar pesquisas consideradas relevantes sobre mecanismos de resistência a inseticidas apresentados por M. persicae, publicados no período de 1990 a 2020.

Keywords


Resistência, Myzus persicae, pulgão-verde.

References


AHMAD SA, HOPKINS TL. Phenol b-glucosyltransferase and b-glucosidase activity in the tabaco hornworm larva Manduca sexta (L.): Properties and tissue localization. Arco. Insect Biochem. Physiol. 1992; 21 : 207–224. doi: 10.1002 / arch.940210305.

AHN SJ, BADENES-PÉREZ FR, HECKEL DG. Um especialista em planta hospedeira, Helicoverpa assulta, é mais tolerante à capsaicina de Capsicum annuum do que outras espécies noctuidas. J. Insect Physiol. 2011; 57 : 1212–1219. doi: 10.1016 / j.jinsphys.2011.05.015.

AHN SJ, BADENES-PÉREZ FR, REICHELT M., SVATOŠ A., SCHNEIDER B., GERSHENZON J., HECKEL DG Metabolic detoxification of capsaicin by UDP glycosyltransferase in three Helicoverpa species. Arco. Insect Biochem. Physiol., 2011; 78 : 104–118. doi: 10.1002 / arch.20444.

ALON M, ALON F, NAUEN R, MORIN S. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect biochem. Mol. Biol., 2008; 38: 940-949

ANDREI E. Compêndio de defensivos agrícolas. 5a ed. São Paulo: Andrei, 1996. 506 p.

ANDREWS MC, CALLAGHAN A, BASS C, WILLIAMSON MS, FIELD LM, MOORES GD. A single amino acid substitution found in pirimicarb-insensitive acetylcholinesterase of the peach-potato aphid, Myzus persicae (Sulzer). In: Cholinergic Mechanisms: Function and Dysfunction, St Moritz, Switzerland; 2002.

ANDREWS MC, CALLAGHAN A, FIELD LM, WILLIAMSON MS, MOORES GD. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Mol. Biol., 2004;13: 555-561.

ANTHON EW. Evidence for green peach aphid resistance to organophosphorous insecticides. J. Econ. Entomol., 1955; 48: 56-57.

ANTHONY N, UNRUH T, GANSER D, FFRENCH-CONSTANT R. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol. Gen. Genet., 1998; 260: 165-175.

BALABANIDOU V, GRIGORAKI L, VONTAS J. Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 2018; 27: 68-74.

BASS C, PUINEAN AM, ANDREWS MC, CULTER P, DANIELS M, ELIAS J, LAURA PAUL V, CROSSTHWAITE AJ, DENHOLM I, FIELD LM, FOSTER SP, LIND R, WILLIAMSON MS, SLATER R. Mutation of a nicotinic acetylcholine receptor b subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci., 2011; 12: 51.

BASS C, ZIMMER CT, RIVERON JM, WILDING CS, WONDJI CS, KAUSSMANN M, FIELD LM, WILLIAMSON MS, NAUEN R. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. U. S. A., 2013; 110: 19460-19465.

BASS C, PUINEAN AM, ZIMMER CT, DENHOLM I, FIELD LM, FOSTER SP, GUTBROD O, NAUEN R, SLATER R, WILLIAMSON MS. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 2014; 51: 41-51.

BEATY BJ, MARQUARDT WC. 1996. The biology of diseases vectors. University Press of Colorado, 1996. 632 p.

BENTING J, NAUEN R. Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypii mediates resistance to pirimicarb and omethoate. Pest Manag. Sci., 2004; 60: 1051-1055.

BERNAL J, GARRIDO-BAILÓN E, DEL NOZAL MJ, GONZÁLEZ-PORTO AV, MARTÍN-HERNÁNDEZ R, DIEGO JC, JIMÉNEZ JJ, BERNAL JL, HIGES M. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J. Econ. Entomol., 2010; 103: 1964-71.

BLACKMAN RL, EASTOP VF. 2000. Aphids on the World's Crops, an Identification and Information Guide. 2 nd. Chichester, UK: John Wiley & Sons Ltd., 2000. 466 p.

BLACKMAN RL, EASTOP VF. 2015. Aphids on the World’s Plants: An online identification and information guide. Disponível em: http://www.aphidsonworldsplants.info/. Acesso em: 15 jul. 2019.

BLACKMAN RL, EASTOP VF. Taxonomic issues. In: VAN EMDEN, H.F.; HARRINGTON, R. (eds.) Aphids as crop pests. CAB International, Wallingford, UK; 2007. p. 1-22.

BLOONQUIST JR. 1993. Toxicology, mode of action, and target site-mediated resistance to insecticides acting on chloride channels. Comparative Biochemistry and Physiology, 106 (2): 301-314.

Boiça-Junior AL, Tagliari SRA, Pitta RM, de Jesus FG, Braz LT. 2011. Influência de genótipos de couve (Brassica oleracea L. var. acephala DC.) na biologia de Plutella xylostella (L., 1758) (Lepidoptera: Plutellidae). Ciência e Agrotecnologia, 2011; 35 (4): 710-717.

BUNYA N, SAWAMOTO K, BENOIT H, BIRD SB. The effect of parathion on red blood cell acetylcholinesterase in the wistar rat. Journal of Toxicology, 2016: 1-6.

CAO CW, JING Z, GAO XW, PEI L, GUO HL. Differential mRNA expression levels and gene sequences of carboxylesterase in both deltamethrin resistant and susceptible strains of the cotton aphid, Aphis gossypii. Insect Sci., 2008;15, 209-216.

CÁRDENAS O, SILVA E, ORTIZ J. Uso de plaguicidas inhibidores de acetilcolinesterasa en once entidades territoriales de salud en Colombia, 2002-2005. Biomédica, 2010; 30(1): 95-110.

CASIDA JE. Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance. J Agric Food Chem., 2011; 59 (7): 2923–2931.

CASIDA JE, QUISTAD GB. Golden age of insecticide: Past, present, or Future?. Ann. Rev. Entomol., 1998; 43: 1-16.

CASTRO AA, PRANDI IG.; KUCA K, RAMALHO TC. Enzimas degradantes de organofosforados: Base molecular e perspectivas para biorremediação enzimática de agroquímicos. Ciência e agrotecnologia, 2017; 41 (5): 471-482.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL (CETESB). 2008. Aldrin, dieldrin e endrin. São Paulo-SP: CETESB, 2008. 98p.

CHAGAS FILHO NR, MICHELOTTO MD, SILVA RA, BUSOLI AC. 2005. Desenvolvimento ninfal de Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae) sobre berinjela em diferentes temperaturas. Bragantia, 2005; 64(2): 257-262.

CHARAABI K, BOUKHRIS‐BOUHACHEM S, MAKNI M, DENHOLM I. Occurrence of target‐site resistance to neonicotinoids in the aphid Myzus persicae in Tunisia, and its status on different host plants, Pest Management Science, 2018; 74(6): 1297-1301.

COSTA, EMR, MARCHESE A.; MALUF WR, SILVA AA. Resistência de genótipos de couve-manteiga ao pulgão-verde e sua relação com a cerosidade foliar. Revista Ciência Agronômica (UFC. Online), 2014; 45: 146-154.

CUTLER P, SLATER R, EDMUNDS AJ, MAIENFISCH P, HALL RG, EARLEY FG, PITTERNA T, PAL S, PAUL VL, GOODCHILD J, BLACKER M, HAGMANN L, CROSSTHWAITE A.J. Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag. Sci., 2013; 69: 607-619.

DAVIES TGE, WILLIAMSON, M.S. Interactions of pyrethroids with the voltagegated sodium channel. Bayer. Crop. J., 2009; 62: 159-178.

DEVONSHIRE AL, SAWICKI RM. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication. Nature, 1979; 280: 140-141.

DEVONSHIRE AL, MOORES GD. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pest. Biochem. Physiol., 1982; 18: 235-246.

DEVONSHIRE AL, MOORES GD, CHIANG C. The biochemistry of insecticide resistance in the peach-potato aphid, Myzus persicae. In: MIYAMOTO J, KEARNEY PC. (Eds.), Pesticide Chemistry, Human Welfare and the Environment: Proceedings of the 5th International Congress of Pesticide Chemistry. Pergamon Press; 1983, p. 191-196.

DEVONSHIRE AL, FIELD LM, FOSTER SP, MOORES GD, WILLIAMSON MS, BLACKMAN RL. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philos Trans R Soc Lond B Biol Sci., 1998; 353:1677–1684.

DE LITTLE SC, EDWARDS O, VAN ROOYEN AR, WEEKS A, UMINA PA. Discovery of metabolic resistance to neonicotinoids in green peach aphids (Myzus persicae) in Australia. Pest Manag. Sci., 2016; 73: 1611–1617.

DU Y, NOMURA Y, SATAR G, HU Z, NAUEN R, HE SY, ZHOROV BS, DONG K. 2013. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc. Natl. Acad. Sci. USA, 2013; 110(29): 11785-11790.

DUPUIS J, LOUIS T, GAUTHIER M, RAYMOND V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions. Neuroscience & Biobehavioral Reviews, 2012; 36 (6), 1553-1564.

ELDEFRAWI AT, MANSOUR N, ELDEFRAWI ME. Insecticides affecting acetylcholine receptor interactions. Pharmac. Theor., 1982; 16: 45-65.

ELLIOT, M.; FARNHAM, A.W.; JANES, N.F.; NEEDHAM, P. H; PULMAN, D. A. Potent pyrethroid insecticides from modified cyclopropan acids. Nature, 1973; 244-456.

ESPINOZA-NAVARRO, PONCE-LAROSA C.; BUSTOS-OBREGÓN E. Organophosphorous pesticides: Their effects on biosentinel species and humans. control and application in Chile. Int. J. Morphol., 2017; 35(3):1069-1074.

FENG X, LI M, LIU N. 2018. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica. Insect Biochemistry and Molecular Biology, 2018; 92: 30-39.

FFRENCH-CONSTANT RH, DEVONSHIRE AL, WHITE RP. Spontaneous loss and reselection of resistance in extremely resistant Myzus persicae (Sulzer). Pest. Biochem. Physiol., 1988; 30: 1-10.

FFRENCH-CONSTANT RH, PITTENDRIGH B, VAUGHAN A, ANTHONY N. Why are there so few resistance-associated mutations in insecticide target genes? Philos Trans R Soc Lond B Biol Sci., 1998; 353(1376): 1685–1693.

FFRENCH-CONSTANT RH, ANTHONY N, ARONSTEIN K, ROCHELEAU T, STILWELL G. Cyclodiene insecticide resistance: from molecular to population genetics. Annu. Rev. Entomol., 2000; 45: 449-466.

FFRENCH-CONSTANT RH, DABORN PJ, LE GOFF G. The genetics and genomics of insecticide resistance. Trends Genet., 2004; 20: 163-170,

FIELD L.M. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem. J., 2000; 349: 863-868.

FIELD LM, DEVONSHIRE AL, FORDE BG. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J., 1988; 251: 309-312.

FIELD LM, DEVONSHIRE AL, FFRENCH-CONSTANT RH, FORDE BG. Changes in DNA methylation are associated with loss of insecticide resistance in the peachpotato aphid Myzus persicae (Sulz.). FEBS Lett., 1989; 243: 323-327.

FIELD LM, BLACKMAN RL, TYLER-SMITH C, DEVONSHIRE AL. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J., 1999; 339: 737-742.

FONTAINE S, CADDOUX L, BRAZIER C, BERTHO C, BERTOLLA P, MICOUD A, ROY L. Uncommon associations in target resistance among French populations of Myzus persicae from oilseed rape crops. Pest Manag Sci., 2011; 67: 881-885.

FOSTER SP, DENHOLM I, DEVONSHIRE AL. Field-simulator studies of insecticide resistance to dimethylcarbamates and pyrethroids conferred by metabolicand target site-based mechanisms in peach-potato aphids, Myzus persicae (Hemiptera: Aphididae). Pest Manag. Sci., 2002; 58: 811-816.

FOSTER SP, YOUNG S, WILLIAMSON MS, DUCE I, DENHOLM I, DEVINE GJ. Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies. Hered. (Edinb), 2003; 91 (2): 98-106.

FRAY LM, LEATHER SR, POWELL G, SLATER R, MCINDOE E, LIND RJ. Behavioural avoidance and enhanced dispersal in neonicotinoid-resistant Myzus persicae (Sulzer). Pest Manag. Sci., 2014; 70: 88-96.

FULTON, M.H.; KEY, P.B.; DELORENZO, M.E. Insecticide Toxicity in Fish. Fish Physiology., 2013; 33: 309-368.

GALLO D, NAKANO O, SILVEIRA NETO S, CARVALHO RPL, BATISTA GC, BERTI FILHO E, PARRA JRP, ZUCCHI RA, ALVES SB, VENDRAMIM JD, MARCHINI LC, LOPES JRS, OMOTO C. Manual de Entomologia Agrícola. Piracicaba: Ceres; 2002. 920p.

HEMINGWAY J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem. Mol. Biol., 2000; 30: 1009-1015.

HERNANDEZ R, GUERRERO FD, GEORGE JE, WAGNER GG. Allele frequency and gene expression of a putative carboxylesterase encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect biochem., 2002; 32: 1009-1016.

JAVED N, VINER R, WILLIAMSON MS, FIELD LM, DEVONSHIRE AL, MOORES GD. Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Insect Mol. Biol., 2003;12: 613-620.

KASPROWICZ L, MALLOCH G, PICKUP J, FENTON B. Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agricultural and Forest Entomology, 2008; 10(2): 91-100.

KASHIWAQUI MM, GUERREIRO JC. Inseticidas antagonistas do GABA: Potencialidades e riscos para o manejo integrado de pragas. Journal of Agronomic Sciences, 2015; 4: 186-200.

KREMPL C, SPORER T, REICHELT M, AHN SJ, HEIDEL-FISCHER H, VOGEL H, HECKEL DG, JOUßEN N. Reglucosylation of the benzoxazinoid DIMBOA with inversion of stereochemical configuration is a detoxification strategy in lepidopteran herbivores. Angew. Chem. 2016; 53, 11320–11324.

LEE SH, KIM YH, KWON DH, CHA DJ, KIM JH. Mutation and duplication of arthropod acetylcholinesterase: Implications for pesticide resistance and tolerance. Pesticide Biochemistry and Physiology, 2015; 120: 118-124.

LI X, SCHULER MA, BERENBAUM MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol., 2007; 52: 231-253.

LIU Y, LIN K, LIU Y, GUI F, WANG G. Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum. Journal of Integrative Agriculture, 2013; 12 (11), 2083-2091.

LIU, N.; LI, M.; GONG, Y.; LIU, F.; LI, T. Cytochrome P450s – Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology, 2015; 120: 77-81

MARGARITOPOULOS JT, KASPROWICZ L, MALLOCH GL, FENTON B. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol., 2009; 9: 1-13.

MARTINEZ-TORRES D, DEVONSHIRE AL, WILLIAMSON MS. Molecular studies of knockdown resistance to pyrethroids: cloning of domain II sodium channel gene sequences from insects. Pestic. Sci., 1997; 51: 265-270.

MARTINEZ-TORRES D, FOSTER SP, FIELD LM, DEVONSHIRE AL, WILLIAMSON MS. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol. Biol., 1999; 8: 339-346,

MATHENGE EM, GIMNIG JE, KOLCZAK M, OMBOK M, IRUNGU LW, HAWLEY W. A. Effect of permethrinimpregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J. Med. Entomol., 2001; 38: 531-536.

MBOGO, C. N., BAYA, N. M., OFULLA, A. V. O.; GITHURE JI, SNOW RW. The impact of permethrinimpregnated bednets on malaria vectors of the Kenyan coast. Med. Vet. Entomol., 1996; 10, 251-259.

MEIJER M, HAMERS T, WESTERINK RHS. Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub)micromolar concentrations of organophosphate insecticides. Neurotoxicology, 2014; 43: 110-116.

MEZEI I, BIELZA P, SIEBERT M W, TORNE M, GOMEZ L E, VALVERDE-GARCIA P, BELANDO A, MORENO I, GRÁVALOS C, CIFUENTES D, SPARKS T C. Sulfoxaflor efficacy in the laboratory against imidacloprid-resistant and susceptible populations of the green peach aphid, Myzus persicae: Impact of the R81T mutation in the nicotinic acetylcholine receptor. Pesticide Biochemistry and Physiology, 2020; 166 1045825.

MOORES GD, DEVINE GJ, DEVONSHIRE AL. Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pest. Biochem. Physiol., 1994; 49, 114-120,

MOREIRA MF, MANSUR JF, MANSUR JF. Resistência e Inseticidas: Estratégias, Desafios e Perspectivas no Controle de Insetos. In: Mario Alberto da Silva Neto. (Org.). Resistência e Inseticidas: Estratégias, Desafios e Perspectivas no Controle de Insetos. 1ed. Rio de Janeiro: INCT-EM; 2012, p. 1-23.

MOURA AP, GUIMARÃES J A, FERNANDES FR, MICHEREFF FILHO M. Recomendações técnicas para o manejo integrado de pragas da cultura do alho. Brasília: Embrapa Hortaliças (Circular Técnica 118); 2013.

NABESHIMA T, KOZAKI T, TOMITA T, KONO Y. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem. Biophys. Res. Commun., 2003; 307: 15-22.

NAKAO T. Mechanisms of resistance to insecticides targeting RDL GABA receptors in planthoppers. NeuroToxicology, 2017; 60: 293-298.

NAKATA H, HIRAKAWA Y, KAWAZOE M, NAKABO T, ARIZONO K, ABE SI, KITANO T, SHIMADA H, WATANABE I, LI W, DING X. Concentration and composition of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hanzhou Bay and Shanghai city region, China. Environmental Pollution, 2005; 133(1): 415-429.

NAUEN R. Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic. Sci., 1995; 44: 145-153.

NAUEN R, DENHOLM I. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch. Insect Biochem. Physiol., 2005; 58: 200-215.

NEEDHAM PH, SAWICKI RM. Diagnosis of resistance to organophosphorus insecticides in Myzus persicae. Nature, 1971; 230: 125-126.

OLA-DAVIES OE, AZEEZ OI, OYAGBEMI AA, ABATAN MO. Acute coumaphos organophosphate exposure in the domestic dogs: Its implication on haematology and liver functions. International Journal of Veterinary Science and Medicine, 2018; 6(1): 103-112.

O'REILLY AO, KHAMBAY BPS, WILLIAMSON MS, FIELD LM, WALLACE BA, DAVIES TGE. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem. J., 2006; 396: 255-263.

PAN Y, XU P, ZENG X, LIU X, SHANG Q. Characterization of UDP-Glucuronosyltransferases and the Potential Contribution to Nicotine Tolerance in Myzus persicae. Int. J. Mol. Sci. 2019, 20, 3637; doi:10.3390/ijms20153637

PHILIPPOU D, FIELD LM, MOORES GD. Metabolic enzyme(s) confer imidacloprid resistance in a clone of Myzus persicae (Sulzer) (Hemiptera: Aphididae) from Greece. Pest Manag. Sci., 2009; 66: 390-395.

POUPARDIN R, SRISUKONTARAT W, YUNTA C. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl. Trop., 2014; 8: e2743.

PUINEAN AM, FOSTER SP, OLIPHANT L, DENHOLM I, FIELD LM, MILLAR NS, WILLIAMSON MS, BASS C. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. Plos Genet., 2010; 6(6): e1000999.

PUINEAN AM, ELIAS J, SLATER R, WARREN A, FIELD LM, WILLIAMSON M.S, BASS C. Development of a high-throughput real-time PCR assay for the detection of the R81T mutation in the nicotinic acetylcholine receptor of neonicotinoid-resistant Myzus persicae. Pest Manag. Sci., 2013; 69: 195-199.

PYAKUREL P, SHIN M, VENTON BJ. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochemistry International, 2018; 114: 33-41.

ROJAS RODRÍGUEZ AE, TORO-OSORIO BM, DÍAZ-ZAPATA JA. Niveles de colinesterasa sérica en caficultores del Departamento de Caldas, Colombia. Rev. salud pública, 2017; 19(3): 318-324.

SALAS-ARAIZA MD, GONZÁLEZ-MÁRQUEZ MA, MARTÍNEZ-JAIME OA. Relation the number of individuals with Brevicoryne brassicae temperature and his parasitoid Diaretiella rapae in broccoli of Bajío, Mexico. Revista Mexicana de Ciencias Agrícolas, 2016; 7(2): 463-469.

SCHMIDT JM, GOOD RT, APPLETON B, SHERRARD J, RAYMANT GC, BOGWITZ MR, MARTIN J, DABORN PJ, GODDARD ME, BATTERHAM P, ROBIN C. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet., 2010; 6(6): e1000998.

SLATER R, PAUL VL, ANDREWS M, GARBAY M, CAMBLIN P. Identifying the presence of neonicotinoid resistant peach-potato aphid (Myzus persicae) in the peach growing regions of southern France and northern Spain. Pest Manag. Sci., 2011; 68: 634-638.

SLATER R, PAUL VL, ANDREWS M, GARBAY M, CAMBLIN P. Identifying the presence of neonicotinoid resistant peach-potato aphid (Myzus persicae) in the peach-growing regions of southern France and northern Spain. Pest Manag. Sci., 2012; 68: 634-638.

SOMERS J, NGUYEN J, LUMB C, BATTERHAM P, PERRY T. In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. Insect Biochemistry and Molecular Biology, 2015; 64: 116-127.

STONE BF, BROWN AW. Mechanisms of resistance to fenthion in Culex pipiens fatigans Wied. Bull World Health Organ, 1969; 40: 401-408.

SUCEN - Superintendência de Controle de Epidemias , 2001. Segurança em controle químico de vetores; disponível em: http://www.sucen.sp.gov.br/saude_trabalhador/texto_seguranca_e_controle_quimico.htm>Acesso em: 20 de jun. de 2020.

TOMIZAWA M, CASIDA JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammmalian nicotinic receptors. Annu. Rev. Entomol., 2003; 48: 339-364.

VAUGHAN A, HEMINGWAY J. Mosquito carboxylesterase Est 21 (A2): cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J. Biol. Chem., 1995; 270: 17044-17049.

VERMEHREN A, QAZI S, TRIMMER BA. The nicotinic α subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neuroscience Letters, 2001; 313 (3): 113-116.

VIEIRA ERD, SOARES MA, SILVA EB, ASSIS JÚNIOR SL, BARROSO GA. First record of Myzus persicae (Sulzer, 1776) in Eucalyptus urophylla S. T. Blake. Arquivos do Instituto Biológico, 2016; 83: 1-2, e0382015.

WANG Z-H, GONG Y-J, CHEN J-C, SU X-C, CAO L-J, HOFFMANN AA, WEI S-J. Laboratory selection for resistance to sulfoxaflor and fitness costs in the green peach aphid Myzus persicae. Journal Journal of Asia-Pacific Entomology, 2018; 21(1):408-412.

WEETMAN D, DJOGBENOU LS, LUCAS E. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? Current Opinion in Insect Science, 2018; 27: 82-88.

WOUTERS FC, REICHELT M., GLAUSER G., BAUER E., ERB M., GERSHENZON J., VASSAO DG Reglucosylation of the benzoxazinoid DIMBOA com inversão da configuração estereoquímica é uma estratégia de desintoxicação em herbívoros lepidópteros. Angew. Chem. 2014; 53 : 11320–11324.

WU S, YANG Y, YUAN G, CAMPBELL PM, TEESE MG. RUSSELL, R.J, OAKESHOTT, J.G; WU, Y. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect biochem. Mol. Biol., 2011; 41, 14-21.

ZALUCKI MP, FURLONG MJ. Behavior as a mechanism of insecticide resistance: evaluation of the evidence. Current Opinion in Insect Science, 2017; 21: 19-25.

ZAMBOLIM L, CONCEIÇÃO MZ, SANTIAGO T. O que os engenheiros agrônomos devem saber para orientar o uso de produtos fitossanitários. 3ª edição. Viçosa: UFV; 2003. 376 p.

ZAPATA N, VAN DAMME EJM, VARGAS M, DEVOTTO L, SMAGGHE G. Insecticidal activity of a protein extracted from bulbs of Phycella australis Ravenna against the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer. Chilean journal of agricultural research, 2016; 76(2): 188-194.

ZERBA E. Insecticidal activity of pyrethroids on insects of medical importance. Parasit. Today, 1988; 4: 53-57.

ZHANG L, SHI J, SHI X, LIANG P, GAO J, GAO X. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: muscidae). Comp. Biochem. Physiol-B Biochem. Mol. Biol., 2010; 156: 6-11.

ZHANG Y, LIU Y, BAO H, LIU Z. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies. Neuroscience Letters, 2017; 638(18): 151-155.

ZHOROV BS, DONG K. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel. NeuroToxicology, 2017; 60: 171-177.

ZIMMER CT, GARROOD WT, SINGH KS, RANDALL E, LUEKE B, GUTBROD O, MATTHIESEN S, KOHLER M, NAUEN R, DAVIES TGE, BASS C. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper. Current Biology, 2018; 28(2): 268-274.e5.




DOI: https://doi.org/10.34117/bjdv7n1-461

Refbacks

  • There are currently no refbacks.